A diffusion limit for generalized correlated random walks

被引:9
作者
Gruber, U
Schweizer, M
机构
[1] Allianz AG, Allianz Global Risks, D-80802 Munich, Germany
[2] Swiss Fed Inst Technol, ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
correlated random walk; diffusion limit; weak convergence; mathematical finance; large investor; transaction cost; binomial tree;
D O I
10.1239/jap/1143936243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A generalized correlated random walk is a process of partial SUMS X-k = Sigma(k)(j=1) Y-J such that (X, Y) forms a Markov chain. For a sequence (X-n) of such processes in which each Y-J(n) takes only two values, we prove weak convergence to a diffusion process whose generator is explicitly described in terms of the limiting behaviour of the transition probabilities for the Y-n. Applications include asymptotics of option replication under transaction costs and approximation of a given diffusion by regular recombining binomial trees.
引用
收藏
页码:60 / 73
页数:14
相关论文
共 50 条
  • [41] Invariance principles for the first passage times of perturbed random walks
    Larsson-Cohn, L
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 48 (04) : 347 - 351
  • [42] Weak approximation of the fractional Brownian sheet from random walks
    Wang, Zhi
    Yan, Litan
    Yu, Xianye
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 13
  • [43] Limit theorems for the maximal random sums
    Kruglov, VM
    Bo, TZ
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1997, 41 (03) : 468 - 478
  • [44] Diffusive Limit for the Random Lorentz Gas
    Nota, Alessia
    [J]. FROM PARTICLE SYSTEMS TO PARTIAL DIFFERENTIAL EQUATIONS II, 2015, 129 : 273 - 292
  • [45] Transcription, intercellular variability and correlated random walk
    Mueller, Johannes
    Kuttler, Christina
    Hense, Burkhard A.
    Zeiser, Stefan
    Liebscher, Volkmar
    [J]. MATHEMATICAL BIOSCIENCES, 2008, 216 (01) : 30 - 39
  • [46] The correlated random walk with boundaries:: A combinatorial solution
    Böhm, W
    [J]. JOURNAL OF APPLIED PROBABILITY, 2000, 37 (02) : 470 - 479
  • [47] DIFFUSION LIMIT FOR A STOCHASTIC KINETIC PROBLEM
    Debussche, Arnaud
    Vovelle, Julien
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (06) : 2305 - 2326
  • [48] Weak quenched limit theorems for a random walk in a sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Kolodziejska, Alicja
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [49] Non-homogeneous random walks on a semi-infinite strip
    Georgiou, Nicholas
    Wade, Andrew R.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (10) : 3179 - 3205
  • [50] Persistent Random Walks. I. Recurrence Versus Transience
    Cenac, Peggy
    Le Ny, Arnaud
    de Loynes, Basile
    Offret, Yoann
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 232 - 243