A diffusion limit for generalized correlated random walks

被引:9
作者
Gruber, U
Schweizer, M
机构
[1] Allianz AG, Allianz Global Risks, D-80802 Munich, Germany
[2] Swiss Fed Inst Technol, ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
correlated random walk; diffusion limit; weak convergence; mathematical finance; large investor; transaction cost; binomial tree;
D O I
10.1239/jap/1143936243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A generalized correlated random walk is a process of partial SUMS X-k = Sigma(k)(j=1) Y-J such that (X, Y) forms a Markov chain. For a sequence (X-n) of such processes in which each Y-J(n) takes only two values, we prove weak convergence to a diffusion process whose generator is explicitly described in terms of the limiting behaviour of the transition probabilities for the Y-n. Applications include asymptotics of option replication under transaction costs and approximation of a given diffusion by regular recombining binomial trees.
引用
收藏
页码:60 / 73
页数:14
相关论文
共 50 条
  • [31] Gillis's random walks on graphs
    Guillotin-Plantard, N
    JOURNAL OF APPLIED PROBABILITY, 2005, 42 (01) : 295 - 301
  • [32] Searching on patch networks using correlated random walks: Space usage and optimal foraging predictions using Markov chain models
    Prasad, B. R. Guru
    Borges, Renee M.
    JOURNAL OF THEORETICAL BIOLOGY, 2006, 240 (02) : 241 - 249
  • [33] POISSON-DIRICHLET BRANCHING RANDOM WALKS
    Addario-Berry, Louigi
    Ford, Kevin
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (01) : 283 - 307
  • [34] Locally Perturbed Random Walks with Unbounded Jumps
    Paulin, Daniel
    Szasz, Domokos
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (06) : 1116 - 1130
  • [35] Locally Perturbed Random Walks with Unbounded Jumps
    Daniel Paulin
    Domokos Szász
    Journal of Statistical Physics, 2010, 141 : 1116 - 1130
  • [36] Invariance principle for nonhomogeneous random walks on the grid ℤ1
    D. A. Yarotskii
    Mathematical Notes, 1999, 66 : 372 - 383
  • [37] Invariance principle for nonhomogeneous random walks on the grid Z
    Yarotskii, DA
    MATHEMATICAL NOTES, 1999, 66 (3-4) : 372 - 383
  • [38] Caribou movement as a correlated random walk
    Bergman, CM
    Schaefer, JA
    Luttich, SN
    OECOLOGIA, 2000, 123 (03) : 364 - 374
  • [39] Caribou movement as a correlated random walk
    C. M. Bergman
    J. A. Schaefer
    S. N. Luttich
    Oecologia, 2000, 123 : 364 - 374
  • [40] On self-attracting d-dimensional random walks
    Bolthausen, E
    Schmock, U
    ANNALS OF PROBABILITY, 1997, 25 (02) : 531 - 572