A diffusion limit for generalized correlated random walks

被引:9
|
作者
Gruber, U
Schweizer, M
机构
[1] Allianz AG, Allianz Global Risks, D-80802 Munich, Germany
[2] Swiss Fed Inst Technol, ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
correlated random walk; diffusion limit; weak convergence; mathematical finance; large investor; transaction cost; binomial tree;
D O I
10.1239/jap/1143936243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A generalized correlated random walk is a process of partial SUMS X-k = Sigma(k)(j=1) Y-J such that (X, Y) forms a Markov chain. For a sequence (X-n) of such processes in which each Y-J(n) takes only two values, we prove weak convergence to a diffusion process whose generator is explicitly described in terms of the limiting behaviour of the transition probabilities for the Y-n. Applications include asymptotics of option replication under transaction costs and approximation of a given diffusion by regular recombining binomial trees.
引用
收藏
页码:60 / 73
页数:14
相关论文
共 50 条
  • [1] Understanding deterministic diffusion by correlated random walks
    Klages, R
    Korabel, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (23): : 4823 - 4836
  • [2] Anomalous diffusion in correlated continuous time random walks
    Tejedor, Vincent
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)
  • [3] Correlated dynamics and random walks in aqueous proton diffusion
    Fischer, Sean
    Dunlap, Brett
    Gunlycke, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] FROM CONTINUOUS TIME RANDOM WALKS TO THE GENERALIZED DIFFUSION EQUATION
    Sandev, Trifce
    Metzler, Ralf
    Chechkin, Aleksei
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 10 - 28
  • [5] From continuous time random walks to the generalized diffusion equation
    Trifce Sandev
    Ralf Metzler
    Aleksei Chechkin
    Fractional Calculus and Applied Analysis, 2018, 21 : 10 - 28
  • [6] DIFFUSIVE LIMIT OF RANDOM WALKS ON TESSELLATIONS VIA GENERALIZED GRADIENT FLOWS
    Hraivoronska, Anastasiia
    Tse, Oliver
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) : 2948 - 2995
  • [8] CORRELATED RANDOM-WALKS
    DELASELVA, SMT
    LINDENBERG, K
    WEST, BJ
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (1-2) : 203 - 219
  • [9] CORRELATED RANDOM-WALKS
    BENDER, EA
    RICHMOND, LB
    ANNALS OF PROBABILITY, 1984, 12 (01): : 274 - 278
  • [10] Limit theorems for random walks
    Bendikov, Alexander
    Cygan, Wojciech
    Trojan, Bartosz
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (10) : 3268 - 3290