On topological groups with a first-countable remainder, III

被引:3
作者
Arhangel'skii, A. V.
van Mill, J. [1 ,2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Fac Sci, NL-1081 HV Amsterdam, Netherlands
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2600 GA Delft, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 01期
关键词
Character; Remainder; Compactification; Topological group; First-countable; Metrizable; Rajkov complete; Continuum hypothesis; INVARIANTS; SPACES;
D O I
10.1016/j.indag.2013.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general theorem that allows us to conclude that under CH, the free topological group over a nontrivial convergent sequence S has a first-countable remainder. It is also shown that any separable non-metrizable topological group with a first-countable remainder is Rajkov complete. (C) 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 24 条
[1]  
[Anonymous], PREPRINT
[2]   First countability, tightness, and other cardinal invariants in remainders of topological groups [J].
Arhangel'skii, A. V. .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (16) :2950-2961
[3]   More on remainders close to metrizable spaces [J].
Arhangel'skii, A. V. .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) :1084-1088
[4]  
Arhangel'skii AV, 2008, COMMENT MATH UNIV CA, V49, P119
[5]  
Arhangel'skii A. V., 2012, TOPOLOGICAL GROUPS 1, VII
[6]   Remainders in compactifications and generalized metrizability properties [J].
Arhangel'skii, AV .
TOPOLOGY AND ITS APPLICATIONS, 2005, 150 (1-3) :79-90
[7]  
Arhangelskii A.V., 2008, ATLANTIS STUD MATH, V1
[8]  
Arhangelskii A.V., 2013, Topol. Proc., V42, P157
[9]  
Arhangelskii A. V., 1968, MICH MATH J, V15, P506
[10]  
ARHANGELSKII AV, 1968, MICH MATH J, V15, P313