Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

被引:42
作者
Vega-Flick, A. [1 ,2 ]
Duncan, R. A. [1 ]
Eliason, J. K. [1 ]
Cuffe, J. [3 ]
Johnson, J. A. [1 ,4 ]
Peraud, J. -P. M. [3 ]
Zeng, L. [3 ]
Lu, Z. [3 ]
Maznev, A. A. [1 ]
Wang, E. N. [3 ]
Alvarado-Gil, J. J. [2 ]
Sledzinska, M. [5 ,6 ]
Sotomayor Torres, C. M. [5 ,6 ,7 ]
Chen, G. [3 ]
Nelson, K. A. [1 ]
机构
[1] MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] CINVESTAV, Unidad Merida, Appl Phys Dept, Carretera Antigua Progreso Km 6, Merida 97310, Yucatan, Mexico
[3] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
[5] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[6] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain
[7] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
关键词
PHONON TRANSPORT; CONDUCTIVITY; SCATTERING; SURFACE; FILMS; HEAT;
D O I
10.1063/1.4968610
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both "solid" and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:13
相关论文
共 65 条
[1]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[2]   Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates [J].
Asheghi, M ;
Touzelbaev, MN ;
Goodson, KE ;
Leung, YK ;
Wong, SS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (01) :30-36
[3]   Phonon-boundary scattering in thin silicon layers [J].
Asheghi, M ;
Leung, YK ;
Wong, SS ;
Goodson, KE .
APPLIED PHYSICS LETTERS, 1997, 71 (13) :1798-1800
[4]   In-plane thermal conductivity determination through thermoreflectance analysis and measurements [J].
Aubain, Max S. ;
Bandaru, Prabhakar R. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (08)
[5]   Determination of diminished thermal conductivity in silicon thin films using scanning thermoreflectance thermometry [J].
Aubain, Max S. ;
Bandaru, Prabhakar R. .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[6]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549
[7]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[8]   Four-wave mixing experiments with extreme ultraviolet transient gratings [J].
Bencivenga, F. ;
Cucini, R. ;
Capotondi, F. ;
Battistoni, A. ;
Mincigrucci, R. ;
Giangrisostomi, E. ;
Gessini, A. ;
Manfredda, M. ;
Nikolov, I. P. ;
Pedersoli, E. ;
Principi, E. ;
Svetina, C. ;
Parisse, P. ;
Casolari, F. ;
Danailov, M. B. ;
Kiskinova, M. ;
Masciovecchio, C. .
NATURE, 2015, 520 (7546) :205-U149
[9]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[10]  
Cahill D.G., 2003, J. App. Phys, V93, P2