Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper

被引:144
作者
Glavan, Ana C. [1 ]
Martinez, Ramses V. [1 ,2 ]
Maxwell, E. Jane [1 ]
Subramaniam, Anand Bala [1 ]
Nunes, Rui M. D. [1 ]
Soh, Siowling [1 ]
Whitesides, George M. [1 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] IMDEA Nanosci, Madrid Inst Adv Studies, Madrid 28049, Spain
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
基金
加拿大自然科学与工程研究理事会;
关键词
LOW-COST; IMMUNOASSAY; FLOW; POLY(DIMETHYLSILOXANE); IMMUNODEVICE; BIOMARKERS; DROPLETS; SYSTEMS; PLASMA; VALVES;
D O I
10.1039/c3lc50371b
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper describes the fabrication of pressure-driven, open-channel microfluidic systems with lateral dimensions of 45-300 microns carved in omniphobic paper using a craft-cutting tool. Vapor phase silanization with a fluorinated alkyltrichlorosilane renders paper omniphobic, but preserves its high gas permeability and mechanical properties. When sealed with tape, the carved channels form conduits capable of guiding liquid transport in the low-Reynolds number regime (i.e. laminar flow). These devices are compatible with complex fluids such as droplets of water in oil. The combination of omniphobic paper and a craft cutter enables the development of new types of valves and switches, such as "fold valves'' and "porous switches,'' which provide new methods to control fluid flow.
引用
收藏
页码:2922 / 2930
页数:9
相关论文
共 61 条
[1]   Inkjet-printed microfluidic multianalyte chemical sensing paper [J].
Abe, Koji ;
Suzuki, Koji ;
Citterio, Daniel .
ANALYTICAL CHEMISTRY, 2008, 80 (18) :6928-6934
[2]  
[Anonymous], 2013, LAB CHIP, V13, P2922
[3]  
Bartholomeusz DA, 2005, J MICROELECTROMECH S, V14, P1364, DOI 10.1109/JMEMS.2005.859087
[4]   Hot embossing as a method for the fabrication of polymer high aspect ratio structures [J].
Becker, H ;
Heim, U .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 83 (1-3) :130-135
[5]   Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper [J].
Bruzewicz, Derek A. ;
Reches, Meital ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2008, 80 (09) :3387-3392
[6]   Micromixing Within Microfluidic Devices [J].
Capretto, Lorenzo ;
Cheng, Wei ;
Hill, Martyn ;
Zhang, Xunli .
MICROFLUIDICS: TECHNOLOGIES AND APPLICATIONS, 2011, 304 :27-68
[7]   Paper Microzone Plates [J].
Carrilho, Emanuel ;
Phillips, Scott T. ;
Vella, Sarah J. ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :5990-5998
[8]   Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J].
Carrilho, Emanuel ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7091-7095
[9]   Mobile Device for Disease Diagnosis and Data Tracking in Resource-Limited Settings [J].
Chin, Curtis D. ;
Cheung, Yuk Kee ;
Laksanasopin, Tassaneewan ;
Modena, Mario M. ;
Chin, Sau Yin ;
Sridhara, Archana A. ;
Steinmiller, David ;
Linder, Vincent ;
Mushingantahe, Jules ;
Umviligihozo, Gisele ;
Karita, Etienne ;
Mwambarangwe, Lambert ;
Braunstein, Sarah L. ;
van de Wijgert, Janneke ;
Sahabo, Ruben ;
Justman, Jessica E. ;
El-Sadr, Wafaa ;
Sia, Samuel K. .
CLINICAL CHEMISTRY, 2013, 59 (04) :629-640
[10]   Commercialization of microfluidic point-of-care diagnostic devices [J].
Chin, Curtis D. ;
Linder, Vincent ;
Sia, Samuel K. .
LAB ON A CHIP, 2012, 12 (12) :2118-2134