Numerical Study on the Dynamics and Oxygen Uptake of Healthy and Malaria-Infected Red Blood Cells

被引:0
|
作者
Jayathilake, P. G. [1 ]
Liu, Gang [1 ]
Tan, Zhijun [3 ,4 ]
Khoo, B. C. [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 119260, Singapore
[2] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117576, Singapore
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Red blood cell; malaria; oxygen; biomechanics; numerical simulation; PLASMODIUM-FALCIPARUM; FLOW; ADHESION; MODEL; DISSOCIATION; AGGREGATION; TRANSPORT;
D O I
10.4208/aamm.2014.m538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Red blood cells (RBCs) are very important due to their role of oxygen transport from lungs. As the malaria parasite grows in the malaria-infected red blood cells (IRBCs), the properties of the cells change. In the present work, the oxygen uptake by RBCs and IRBCs at the pulmonary capillaries is simulated using a numerical technique based on the two-dimensional immersed interface method. The results for the oxygen uptake by a stationary single RBC have fair agreements with the previously reported results. The numerical results show that the malaria infection could significantly cause deterioration on the oxygen uptake by red blood cells. The results also suggest that the oxygen uptake by individual stationary RBC/IRBC would not be significantly affected by the neighboring cells provided the separation distance is about the dimension of the cell. Furthermore, it appears that the oxygen uptake by both RBCs and IRBCs is dominated by mass diffusion over the convection although the Peclet number is of the order of unity.
引用
收藏
页码:549 / 568
页数:20
相关论文
共 50 条
  • [1] On the birefringence of healthy and malaria-infected red blood cells
    Dharmadhikari, Aditya K.
    Basu, Himanish
    Dharmadhikari, Jayashree A.
    Sharma, Shobhona
    Mathur, Deepak
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (12)
  • [2] Biophotonic techniques for the study of malaria-infected red blood cells
    Mauritz, Jakob M. A.
    Esposito, Alessandro
    Tiffert, Teresa
    Skepper, Jeremy N.
    Warley, Alice
    Yoon, Young-Zoon
    Cicuta, Pietro
    Lew, Virgilio L.
    Guck, Jochen R.
    Kaminski, Clemens F.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (10) : 1055 - 1063
  • [3] Biophotonic techniques for the study of malaria-infected red blood cells
    Jakob M. A. Mauritz
    Alessandro Esposito
    Teresa Tiffert
    Jeremy N. Skepper
    Alice Warley
    Young-Zoon Yoon
    Pietro Cicuta
    Virgilio L. Lew
    Jochen R. Guck
    Clemens F. Kaminski
    Medical & Biological Engineering & Computing, 2010, 48 : 1055 - 1063
  • [4] Study on the dielectrophoretic characteristics of malaria-infected red blood cells
    Panklang, Nitipong
    Vijitnukoonpradit, Kitipob
    Putaporntip, Chaturong
    Chotivanich, Kesinee
    Nakano, Michihiko
    Horprathum, Mati
    Techaumnat, Boonchai
    ELECTROPHORESIS, 2023, 44 (23) : 1837 - 1846
  • [5] Autoagglutination of malaria-infected red blood cells and malaria severity
    Roberts, DJ
    Pain, A
    Kai, O
    Kortok, M
    Marsh, K
    LANCET, 2000, 355 (9213): : 1427 - 1428
  • [6] Stretching and Relaxation of Malaria-Infected Red Blood Cells
    Ye, Ting
    Nhan Phan-Thien
    Khoo, Boo Cheong
    Lim, Chwee Teck
    BIOPHYSICAL JOURNAL, 2013, 105 (05) : 1103 - 1109
  • [7] PROTEASES IN MALARIA-INFECTED RED-BLOOD-CELLS
    SCHREVEL, J
    DEGUERCY, A
    MAYER, R
    MONSIGNY, M
    BLOOD CELLS, 1990, 16 (2-3): : 563 - 584
  • [8] Rolling Adhesion of Malaria-Infected Red Blood Cells
    Dasanna, Anil Kumar
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 126A - 126A
  • [9] Patch clamping malaria-infected red blood cells
    Elford, B
    TRENDS IN MICROBIOLOGY, 2000, 8 (11) : 495 - 495
  • [10] Mechanics of deformation of malaria-infected red blood cells
    Eraky, Mohamed T.
    Abd El-Rahman, Ahmed I.
    Shazly, Mostafa H.
    Abdelrahman, Mohamed M.
    MECHANICS RESEARCH COMMUNICATIONS, 2021, 113