The feasibility of a piecewise-linear dynamic bowtie filter

被引:63
作者
Hsieh, Scott S. [1 ,2 ]
Pelc, Norbert J. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
dynamic bowtie; fluence field modulation; dynamic range reduction; photon counting detector; TUBE CURRENT MODULATION; COMPUTED-TOMOGRAPHY; DOSE REDUCTION; NOISE; CT;
D O I
10.1118/1.4789630
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The prepatient attenuator (or "bowtie filter") in CT is used to modulate the flux as a function of fan angle of the x-ray beam incident on the patient. Traditional, static bowtie filters are tailored only for very generic scans and for the average patient. The authors propose a design for a dynamic bowtie that can produce a time-dependent piecewise-linear attenuation profile. This dynamic bowtie may reduce dynamic range, dose or scatter, but in this work they focus on its ability to reduce dynamic range, which may be particularly important for systems employing photon-counting detectors. Methods: The dynamic bowtie is composed of a set of triangular wedges. Each wedge is independently moved in order to produce a time-dependent piecewise-linear attenuation profile. Simulations of the bowtie are conducted to estimate the dynamic range reduction in six clinical datasets. The control of the dynamic bowtie is determined by solving a convex optimization problem, and the dose is estimated using Monte Carlo techniques. Beam hardening artifacts are also simulated. Results: The dynamic range is reduced by factors ranging from 2.4 to 27 depending on the part of the body studied. With a dynamic range minimization objective, the dose to the patient can be reduced from 6% to 33% while maintaining peak image noise. Further reduction in dose may be possible with a specific dose reduction objective. Beam hardening artifacts are suppressed with a two-pass algorithm. Conclusions: A dynamic bowtie producing a time-dependent, piecewise-linear attenuation profile is possible and can be used to modulate the flux of the scanner to the imaging task. Initial simulations show a large reduction in dynamic range. Several other applications are possible. (C) 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4789630]
引用
收藏
页数:12
相关论文
共 24 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
[Anonymous], 2011, CVX MATLAB SOFTWARE
[3]  
Arenson JS., 2008, US Patent, Patent No. [7,330,535 B2, 7330535]
[4]   Fluence field optimization for noise and dose objectives in CT [J].
Bartolac, Steven ;
Graham, Sean ;
Siewerdsen, Jeff ;
Jaffray, David .
MEDICAL PHYSICS, 2011, 38 :S2-S17
[5]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[6]   NOISE DUE TO PHOTON-COUNTING STATISTICS IN COMPUTED X-RAY TOMOGRAPHY [J].
CHESLER, DA ;
RIEDERER, SJ ;
PELC, NJ .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1977, 1 (01) :64-74
[7]   A COMPARISON OF COMPUTED AND MEASURED HEEL EFFECT FOR VARIOUS TARGET ANGLES [J].
FRITZ, SL ;
LIVINGSTON, WH .
MEDICAL PHYSICS, 1982, 9 (02) :216-219
[8]   Dose reduction in CT by anatomically adapted tube current modulation. 1. Simulation studies [J].
Gies, M ;
Kalender, WA ;
Wolf, H ;
Suess, C ;
Madsen, MT .
MEDICAL PHYSICS, 1999, 26 (11) :2235-2247
[9]   Graph implementations for nonsmooth convex programs [J].
Stanford University, United States .
Lect. Notes Control Inf. Sci., 2008, (95-110) :95-110
[10]   DIGITAL BEAM ATTENUATOR TECHNIQUE FOR COMPENSATED CHEST RADIOGRAPHY [J].
HASEGAWA, BH ;
NAIMUDDIN, S ;
DOBBINS, JT ;
MISTRETTA, CA ;
PEPPLER, WW ;
HANGIANDREOU, NJ ;
CUSMA, JT ;
MCDERMOTT, JC ;
KUDVA, BV ;
MELBYE, KM .
RADIOLOGY, 1986, 159 (02) :537-543