Corrosion of high entropy alloys

被引:425
|
作者
Qiu, Yao [1 ]
Thomas, Sebastian [1 ]
Gibson, Mark A. [1 ,2 ]
Fraser, Hamish L. [1 ,3 ]
Birbilis, Nick [1 ]
机构
[1] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[2] CSIRO Mfg, Clayton, Vic 3168, Australia
[3] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA
基金
澳大利亚研究理事会;
关键词
MECHANICAL-PROPERTIES; PERCOLATION MODEL; PITTING CORROSION; ALUMINUM CONTENT; STAINLESS-STEEL; AL ADDITION; FE-CR; MICROSTRUCTURE; BEHAVIOR; PHASE;
D O I
10.1038/s41529-017-0009-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High entropy alloys represent a unique class of metal alloys, comprising nominally five or more elements in near equiatomic proportions. High entropy alloys have gained significant interest on the basis that the high configurational entropy of such alloy systems is purported to result in a single-phase solid solution structure. While such a single-phase structure can occur in unique systems, it is now appreciated that the definition of high entropy alloys can be broader, with systems comprising only four elements possible of forming single phases, and most five (or more) element systems actually being multi (>2) phases. To this end, the notion of compositionally complex alloys is a more general description, with the concise review herein focusing on the corrosion of compositionally complex alloys (inclusive of high entropy alloys). It is noted that generally, in spite of complex compositions and in many cases complicated microstructural heterogeneity, compositionally complex alloys are nominally corrosion-resistant. This is discussed and aspects of the status and needs are presented.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys
    Tang, Zhi
    Huang, Lu
    He, Wei
    Liaw, Peter K.
    ENTROPY, 2014, 16 (02) : 895 - 911
  • [2] Corrosion of Al(Co)CrFeNi High-Entropy Alloys
    Godlewska, Elzbieta M.
    Mitoraj-Krolikowska, Marzena
    Czerski, Jakub
    Jawanska, Monika
    Gein, Sergej
    Hecht, Ulrike
    FRONTIERS IN MATERIALS, 2020, 7 (07)
  • [3] Microstructural characterization and corrosion behavior of AlxCoCrFeNi high entropy alloys
    Izadi, M.
    Soltanieh, M.
    Alamolhoda, S.
    Aghamiri, S. M. S.
    Mehdizade, M.
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 273
  • [4] Corrosion-Resistant Biomedical High-Entropy Alloys: A Review
    Shi, Zijie
    Fang, Qihong
    Liaw, Peter K.
    Li, Jia
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (22)
  • [5] A Review on Corrosion Properties of High Entropy Alloys Fabricated by Additive Manufacturing
    Das, Priyabrata
    Nandan, Rakesh
    Pandey, Pulak Mohan
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2022, 75 (10) : 2465 - 2476
  • [6] Niobium addition improves the corrosion resistance of TiHfZrNbx high-entropy alloys in Hanks' solution
    Tanji, Ayoub
    Fan, Xuesong
    Sakidja, Ridwan
    Liaw, Peter K.
    Hermawan, Hendra
    ELECTROCHIMICA ACTA, 2022, 424
  • [7] Mechanical properties and corrosion resistance of AlxCoCuFeMn high-entropy alloys
    Yan, Yingren
    Fang, Liyang
    Tan, Yongkang
    Tao, Xiaoma
    Ouyang, Yifang
    Du, Yong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 5250 - 5259
  • [8] Corrosion characteristics of high entropy alloys
    Qiu, Y.
    Gibson, M. A.
    Fraser, H. L.
    Birbilis, N.
    MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (10) : 1235 - 1243
  • [9] Corrosion characteristics of high-entropy alloys prepared by spark plasma sintering
    Ujah, Chika Oliver
    Kallon, Daramy V. V.
    Aigbodion, Victor Sunday
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (1-2) : 63 - 82
  • [10] Enhancing corrosion resistance in CoCrFeNiTa high entropy alloys via Mo addition
    Wang, Kang
    Zhu, Yuan
    Wang, Peng-wei
    Li, Xin
    Malomo, Babafemi
    Yang, Liang
    ELECTROCHIMICA ACTA, 2024, 480