Taurine-Conjugated Mussel-Inspired Iron Oxide Nanoparticles with an Elongated Shape for Effective Delivery of Doxorubicin into the Tumor Cells

被引:16
作者
Singh, Nimisha [1 ,2 ]
Millot, Nadine [1 ]
Maurizi, Lionel [1 ]
Lizard, Gerard [4 ]
Kumar, Rajender [2 ,3 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, CNRS, F-21078 Dijon, France
[2] SV Natl Inst Technol, Dept Appl Chem, Surat 395007, Gujarat, India
[3] Cent Univ Himachal Pradesh, Sch Phys & Mat Sci, Dept Chem & Chem Sci, Kangra 176215, Himachal Prades, India
[4] Univ Bourgogne Franche Comte, INSERM, EA7270, Lab BioPeroxIL, F-21000 Dijon, France
关键词
CORE-SHELL NANOPARTICLES; SURFACE FUNCTIONALIZATION; MAGNETIC NANOPARTICLES; DRUG-DELIVERY; POLYDOPAMINE; PH; DOPAMINE; RELEASE; NANOCARRIERS; CHEMISTRY;
D O I
10.1021/acsomega.0c01747
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multifunctional iron oxide magnetic nanoparticles, among them nanorods, were prepared with a mussel-inspired polydopamine (pDA) surface coating agent for cancer therapeutics. Taurine, a free sulfur-containing beta amino acid, was grafted on the pDA at the iron oxide nanoparticle surface to enhance its biocompatibility and targeted delivery action. Doxorubicin (DOX), an anticancer drug, was loaded on the prepared nanovehicles with an entrapment efficiency of 70.1%. Drug release kinetics were then analyzed using UV-vis and fluorescence spectroscopies, suggesting the pH-responsive behavior of the developed nanovehicle. The developed system was then tested on PC-3 cell lines to check its cellular response. Confocal microscopy observations and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and Annexin V-FITC assays used to evaluate cell toxicity and apoptosis reveal a dose-dependent nature of nanorods and can overcome the side effects of using free DOX with a targeted action.
引用
收藏
页码:16165 / 16175
页数:11
相关论文
共 81 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev.bioeng-071811-150124, 10.1146/annurev-bioeng-071811-150124]
[2]   Influence of Electronegative Substituents on the Binding Affinity of Catechol-Derived Anchors to Fe3O4 Nanoparticles [J].
Amstad, Esther ;
Gehring, Andreas U. ;
Fischer, Hakon ;
Nagaiyanallur, Venkatamaran V. ;
Haehner, Georg ;
Textor, Marcus ;
Reimhult, Erik .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (03) :683-691
[3]   Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity [J].
Arias, Lais Salomao ;
Pessan, Juliano Pelim ;
Miranda Vieira, Ana Paula ;
Toito de Lima, Taynara Maria ;
Botazzo Delbem, Alberto Carlos ;
Monteiro, Douglas Roberto .
ANTIBIOTICS-BASEL, 2018, 7 (02)
[4]   Evaluation of Anticancer Drug-Loaded Nanoparticle Characteristics by Nondestructive Methodologies [J].
Awotwe-Otoo, David ;
Zidan, Ahmed S. ;
Rahman, Ziyaur ;
Habib, Muhammad J. .
AAPS PHARMSCITECH, 2012, 13 (02) :611-622
[5]   Direct Functionalization of Nanodiamond Particles Using Dopamine Derivatives [J].
Barras, Alexandre ;
Lyskawa, Joel ;
Szunerits, Sabine ;
Woisel, Patrice ;
Boukherroub, Rabah .
LANGMUIR, 2011, 27 (20) :12451-12457
[6]  
Black KCL, 2013, NANOMEDICINE-UK, V8, P17, DOI [10.2217/NNM.12.82, 10.2217/nnm.12.82]
[7]   Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods [J].
Bordiga, S ;
Buzzoni, R ;
Geobaldo, F ;
Lamberti, C ;
Giamello, E ;
Zecchina, A ;
Leofanti, G ;
Petrini, G ;
Tozzola, G ;
Vlaic, G .
JOURNAL OF CATALYSIS, 1996, 158 (02) :486-501
[8]   Nanoparticle and targeted systems for cancer therapy [J].
Brannon-Peppas, Lisa ;
Blanchette, James O. .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 :206-212
[9]   Applications of gold nanoparticles in cancer nanotechnology [J].
Cai, Weibo ;
Gao, Ting ;
Hong, Hao ;
Sun, Jiangtao .
NANOTECHNOLOGY SCIENCE AND APPLICATIONS, 2008, 1 :17-32
[10]   Real time in vitro studies of doxorubicin release from PHEMA nanoparticles [J].
Chouhan R. ;
Bajpai A.K. .
J. Nanobiotechnology, 2009, 7 (05) :5