Experimental and numerical analyses of magnesium alloy hot workability

被引:48
作者
Abbassi, F. [1 ,2 ]
Srinivasan, M. [1 ]
Loganathan, C. [3 ]
Narayanasamy, R. [4 ]
Gupta, M. [5 ]
机构
[1] Dhofar Univ, Coll Engn, Dept Mech Engn, POB 2509, Salalah 211, Oman
[2] Univ Tunis, URMSSDT, Ensit, 5 Ave Taha Hussein 56, Bab Manara 1008, Tunisia
[3] Chartered Inst Technol, Dept Mech Engn, Abu Rd, Sirohi 307510, Rajasthan, India
[4] Natl Inst Technol, Dept Prod Engn, Tiruchirappalli 620015, Tamil Nadu, India
[5] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117576, Singapore
关键词
AZ31B magnesium alloy; Hot workability; Damage; Plastic instability; TEM analysis; FEM; PROCESSING MAPS; DEFORMATION-BEHAVIOR; MECHANICAL-PROPERTIES; MICROSTRUCTURE; WORKING; COMPOSITE; NANOCOMPOSITE; COMPRESSION; MODEL;
D O I
10.1016/j.jma.2016.10.004
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Due to their hexagonal crystal structure, magnesium alloys have relatively low workability at room temperature. In this study, the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing, numerical modeling and microstructural analyses. Hot deformation tests are performed at temperatures of 250 degrees C to 400 degrees C under strain rates of 0.01 to 1.0 s(-1). Transmission electron microscopy is used to reveal the presence of dynamic recrystallization (DRX), dynamic recovery (DRY), cracks and shear bands. To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy, the authors use Johnson-Cook damage model in a 3D finite element simulation. The optimal hot workability of magnesium alloy is found at a temperature (T) of 400 degrees C and strain rate ((epsilon) over dot) of 0.01 s(-1). Stability is found at a lower strain rate, and instability is found at a higher strain rate. (C) 2016 Production and hosting by Elsevier B.V. on behalf of Chongqing University.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 33 条
[1]   Hot deformation and processing maps of extruded ZE41A magnesium alloy [J].
Anbuselvan, S. ;
Ramanathan, S. .
MATERIALS & DESIGN, 2010, 31 (05) :2319-2323
[2]  
Barnett M.R., 2001, Journal of Light Metals, V1, P167, DOI DOI 10.1016/S1471-5317(01)00010-4
[3]  
Dieter GE., 1976, MECH METALLURGY
[4]   Critical damage value of AZ31B magnesium alloy with different temperatures and strain rates [J].
Dong, Jing-Ren ;
Zhang, Ding-Fei ;
Dong, Yu-Feng ;
Pan, Fu-Sheng ;
Chai, Sen-Sen .
RARE METALS, 2021, 40 (01) :137-142
[5]   A constitutive and fracture model for AZ31B magnesium alloy in the tensile state [J].
Feng, Fei ;
Huang, Shangyu ;
Meng, Zhenghua ;
Hu, Jianhua ;
Lei, Yu ;
Zhou, Mengcheng ;
Yang, Zhenzhen .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 594 :334-343
[6]   Influence of Hot Deformation on Mechanical Properties and Microstructure of a Twin-Roll Cast Aluminium Alloy EN AW-6082 [J].
Grydin, O. ;
Stolbchenko, M. ;
Nuernberger, F. ;
Schaper, M. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (03) :937-943
[7]   In situ analysis of the influence of twinning on the strain hardening rate and fracture mechanism in AZ31B magnesium alloy [J].
Gzyl, Michal ;
Pesci, Raphael ;
Rosochowski, Andrzej ;
Boczkal, Sonia ;
Olejnik, Lech .
JOURNAL OF MATERIALS SCIENCE, 2015, 50 (06) :2532-2543
[8]   Mathematical modeling of thermo-mechanical behavior of strip during twin roll casting of an AZ31 magnesium alloy [J].
Hadadzadeh, Amir ;
Wells, Mary A. .
JOURNAL OF MAGNESIUM AND ALLOYS, 2013, 1 (02) :101-114
[9]   Comparative study of hot-processing maps for 6061 aluminium alloy constructed from power constitutive equation and hyperbolic sine constitutive equation [J].
Hu, H. E. ;
Wang, X. Y. ;
Deng, L. .
MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (11) :1321-1327
[10]   Influence of Dynamic Recrystallization on Tensile Properties of AZ31B Magnesium Alloy Sheet [J].
Hu, Li Juan ;
Peng, Ying Hong ;
Li, Da Yong ;
Zhang, Shao Rui .
MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (08) :880-887