Approximate Controllability of Sobolev Type Nonlocal Fractional Stochastic Dynamic Systems in Hilbert Spaces

被引:27
作者
Kerboua, Mourad [1 ]
Debbouche, Amar [1 ]
Baleanu, Dumitru [2 ,3 ,4 ]
机构
[1] Guelma Univ, Dept Math, Guelma 24000, Algeria
[2] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[3] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Bucharest, Romania
关键词
EVOLUTION-EQUATIONS; MILD SOLUTIONS;
D O I
10.1155/2013/262191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of fractional stochastic dynamic control systems of Sobolev type in Hilbert spaces. We use fixed point technique, fractional calculus, stochastic analysis, and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions for approximate controllability is formulated and proved. An example is also given to provide the obtained theory.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Ahmad B, 2012, ABSTR APPL ANAL, V2012
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 2007, NONLINEAR FUNCT ANAL
[4]  
[Anonymous], 2009, ELECTRON J DIFFER EQ
[5]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[6]  
[Anonymous], 2012, COMPLEXITY NONLINEAR
[7]  
[Anonymous], 2006, Journal of the Electrochemical Society
[8]   On concepts of controllability for deterministic and stochastic systems [J].
Bashirov, AE ;
Mahmudov, NI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1808-1821
[9]   Approximate controllability for semilinear systems [J].
Bian, W .
ACTA MATHEMATICA HUNGARICA, 1998, 81 (1-2) :41-57
[10]   Existence of Solutions for Fractional Differential Inclusions with Separated Boundary Conditions in Banach Space [J].
Bragdi, Mabrouk ;
Debbouche, Amar ;
Baleanu, Dumitru .
ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013