Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning With Application to Autonomous Driving

被引:72
|
作者
Wu, Zheng [1 ]
Sun, Liting [1 ]
Zhan, Wei [1 ]
Yang, Chenyu [2 ]
Tomizuka, Masayoshi [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94709 USA
[2] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai 200240, Peoples R China
关键词
Learning from demonstration; intelligent transportation systems; inverse reinforcement learning; autonomous driving; social human-robot interaction; ALGORITHMS;
D O I
10.1109/LRA.2020.3005126
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In the past decades, we have witnessed significant progress in the domain of autonomous driving. Advanced techniques based on optimization and reinforcement learning become increasingly powerful when solving the forward problem: given designed reward/cost functions, how we should optimize them and obtain driving policies that interact with the environment safely and efficiently. Such progress has raised another equally important question: what should we optimize? Instead of manually specifying the reward functions, it is desired that we can extract what human drivers try to optimize from real traffic data and assign that to autonomous vehicles to enable more naturalistic and transparent interaction between humans and intelligent agents. To address this issue, we present an efficient sampling-based maximum-entropy inverse reinforcement learning (IRL) algorithm in this letter. Different from existing IRL algorithms, by introducing an efficient continuous-domain trajectory sampler, the proposed algorithm can directly learn the reward functions in the continuous domain while considering the uncertainties in demonstrated trajectories from human drivers. We evaluate the proposed algorithm via real-world driving data, including both non-interactive and interactive scenarios. The experimental results show that the proposed algorithm achieves more accurate prediction performance with faster convergence speed and better generalization compared to other baseline IRL algorithms.
引用
收藏
页码:5355 / 5362
页数:8
相关论文
共 50 条
  • [1] Sampling-based Inverse Reinforcement Learning Algorithms with Safety Constraints
    Fischer, Johannes
    Eyberg, Christoph
    Werling, Moritz
    Lauer, Martin
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 791 - 798
  • [2] Integrating Algorithmic Sampling-Based Motion Planning with Learning in Autonomous Driving
    Zhang, Yifan
    Zhang, Jinghuai
    Zhang, Jindi
    Wang, Jianping
    Lu, Kejie
    Hong, Jeff
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (03)
  • [3] Modeling framework of human driving behavior based on Deep Maximum Entropy Inverse Reinforcement Learning
    Wang, Yongjie
    Niu, Yuchen
    Xiao, Mei
    Zhu, Wenying
    You, Xinshang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 652
  • [4] Revisiting Maximum Entropy Inverse Reinforcement Learning: New Perspectives and Algorithm
    Snoswell, Aaron J.
    Singh, Surya P. N.
    Ye, Nan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 241 - 249
  • [5] Decision Making for Autonomous Driving via Augmented Adversarial Inverse Reinforcement Learning
    Wang, Pin
    Liu, Dapeng
    Chen, Jiayu
    Li, Hanhan
    Chan, Ching-Yao
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 1036 - 1042
  • [6] Adaptive generative adversarial maximum entropy inverse reinforcement learning
    Song, Li
    Li, Dazi
    Xu, Xin
    INFORMATION SCIENCES, 2025, 695
  • [7] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [8] Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving
    Zhu, Meixin
    Wang, Yinhai
    Pu, Ziyuan
    Hu, Jingyun
    Wang, Xuesong
    Ke, Ruimin
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 117
  • [9] Application of Reinforcement Learning in the Autonomous Driving Platform of the DeepRacer
    Zhu, Wenjie
    Du, Haikuo
    Zhu, Moyan
    Liu, Yanbo
    Lin, Chaoting
    Wang, Shaobo
    Sun, Weiqi
    Yan, Huaming
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5345 - 5352
  • [10] An open framework for human-like autonomous driving using Inverse Reinforcement Learning
    Vasquez, Dizan
    Yu, Yufeng
    Kumar, Suryansh
    Laugier, Christian
    2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2014,