Parallel implementation of a hyperspectral image linear SVM classifier using RVC-CAL

被引:0
|
作者
Madronal, D. [1 ]
Fabelo, H. [2 ]
Lazcano, R. [1 ]
Callico, G. M. [2 ]
Juarez, E. [1 ]
Sanz, C. [1 ]
机构
[1] Tech Univ Madrid UPM, Ctr Software Technol & Multimedia Syst CITSEM, Madrid, Spain
[2] Univ Las Palmas de Gran Canaria ULPGC, Res Inst Appl Microelect IUMA, Las Palmas Gran Canaria, Las Palmas, Spain
来源
HIGH-PERFORMANCE COMPUTING IN GEOSCIENCE AND REMOTE SENSING VI | 2016年 / 10007卷
关键词
Hyperspectral Imaging; Support Vector Machine; RVC-CAL; Real-time processing; Parallelism exploitation;
D O I
10.1117/12.2241648
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral Imaging (HI) collects high resolution spectral information consisting of hundreds of bands across the electromagnetic spectrum -from the ultraviolet to the infrared range-. Thanks to this huge amount of information, an identification of the different elements that compound the hyperspectral image is feasible. Initially, HI was developed for remote sensing applications and, nowadays, its use has been spread to research fields such as security and medicine. In all of them, new applications that demand the specific requirement of real-time processing have appear. In order to fulfill this requirement, the intrinsic parallelism of the algorithms needs to be explicitly exploited. In this paper, a Support Vector Machine (SVM) classifier with a linear kernel has been implemented using a dataflow language called RVC-CAL. Specifically, RVC-CAL allows the scheduling of functional actors onto the target platform cores. Once the parallelism of the classifier has been extracted, a comparison of the SVM classifier implementation using LibSVM -a specific library for SVM applications-and RVC-CAL has been performed. The speedup results obtained for the image classifier depends on the number of blocks in which the image is divided; concretely, when 3 image blocks are processed in parallel, an average speed up above 2.50, with regard to the RVC-CAL sequential version, is achieved.
引用
收藏
页数:9
相关论文
共 36 条
  • [1] Parallelism exploitation of a PCA algorithm for hyperspectral images using RVC-CAL
    Lazcano, R.
    Sidrach-Cardona, I.
    Madronal, D.
    Desnos, K.
    Pelcat, M.
    Juarez, E.
    Sanz, C.
    HIGH-PERFORMANCE COMPUTING IN GEOSCIENCE AND REMOTE SENSING VI, 2016, 10007
  • [2] Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL
    Lazcano, R.
    Madronal, D.
    Fabelo, H.
    Ortega, S.
    Salvador, R.
    Callico, G. M.
    Juarez, E.
    Sanz, C.
    HIGH-PERFORMANCE COMPUTING IN GEOSCIENCE AND REMOTE SENSING VII, 2017, 10430
  • [3] RVC-CAL library for endmember and abundance estimation in hyperspectral image analysis
    Lazcano Lopez, R.
    Madronal Quintin, D.
    Juarez Martinez, E.
    Sanz Alvaro, C.
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING V, 2015, 9646
  • [4] Dimensionality reduction and endmember extraction for hyperspectral imaging using an RVC-CAL library
    Madronal Quintin, D.
    Lazcano Lopez, R.
    Juarez Martinez, E.
    Sanz Alvaro, C.
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING V, 2015, 9646
  • [5] Hyperspectral image classification using a parallel implementation of the linear SVM on a Massively Parallel Processor Array (MPPA) platform
    Madronal, D.
    Lazcano, R.
    Fabelo, H.
    Ortega, S.
    Callico, G. M.
    Juarez, E.
    Sanz, C.
    PROCEEDINGS OF THE 2016 CONFERENCE ON DESIGN AND ARCHITECTURES FOR SIGNAL & IMAGE PROCESSING, 2016, : 154 - 160
  • [6] A DSP-Based HEVC Decoder Implementation using RVC-CAL and Native OpenHEVC code
    Rodriguez, Pablo
    Balseiro, Fernando
    Chavarrias, Miguel
    Pescador, Fernando
    Garrido, Matias
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE), 2015,
  • [7] AUTOMATIC GENERATION OF SYNTHESIZABLE HARDWARE IMPLEMENTATION FROM HIGH LEVEL RVC-CAL DESCRIPTION
    Jerbi, Khaled
    Raulet, Mickael
    Deforges, Olivier
    Abid, Mohamed
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1597 - 1600
  • [8] SVM-based real-time hyperspectral image classifier on a manycore architecture
    Madronal, D.
    Lazcano, R.
    Salvador, R.
    Fabelo, H.
    Ortega, S.
    Callico, G. M.
    Juarez, E.
    Sanz, C.
    JOURNAL OF SYSTEMS ARCHITECTURE, 2017, 80 : 30 - 40
  • [9] Supervised Hyperspectral Image Classification using SVM and Linear Discriminant Analysis
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 403 - 409
  • [10] Energy consumption characterization of a Massively Parallel Processor Array (MPPA) platform running a hyperspectral SVM classifier
    Madronal, D.
    Lazcano, R.
    Fabelo, H.
    Ortega, S.
    Salvador, R.
    Callico, G. M.
    Juarez, E.
    Sanz, C.
    2017 CONFERENCE ON DESIGN AND ARCHITECTURES FOR SIGNAL AND IMAGE PROCESSING (DASIP), 2017,