Increasing the order of convergence of iterative schemes for solving nonlinear systems

被引:26
作者
Cordero, Alicia [1 ]
Torregrosa, Juan R. [1 ]
Vassileva, Maria P. [2 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
[2] Inst Tecnol Santo Domingo INTEC, Santo Domingo, Dominican Rep
关键词
Nonlinear systems; Iterative methods; Convergence order; Efficiency index; Jacobian matrix; QUADRATURE-FORMULAS; NEWTONS METHOD; EQUATIONS; VARIANTS;
D O I
10.1016/j.cam.2012.11.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set of multistep iterative methods with increasing order of convergence is presented, for solving systems of nonlinear equations. One of the main advantages of these schemes is to achieve high order of convergence with few Jacobian and functional evaluations, joint with the use of the same matrix of coefficients in the most of the linear systems involved in the process. Indeed, the application of the pseudocomposition technique on these proposed schemes allows us to increase their order of convergence, obtaining new high-order, efficient methods. Finally, some numerical tests are performed in order to check their practical behavior. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 94
页数:9
相关论文
共 13 条
[1]   A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule [J].
Babajee, D. K. R. ;
Dauhoo, M. Z. ;
Darvishi, M. T. ;
Barati, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) :452-458
[2]   Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations [J].
Babajee, D. K. R. ;
Dauhoo, M. Z. ;
Darvishi, M. T. ;
Karami, A. ;
Barati, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) :2002-2012
[3]   Variants of Newton's Method using fifth-order quadrature formulas [J].
Cordero, A. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :686-698
[4]   On interpolation variants of Newton's method for functions of several variables [J].
Cordero, A. ;
Torregrosa, Juan R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) :34-43
[5]   Pseudocomposition: A technique to design predictor-corrector methods for systems of nonlinear equations [J].
Cordero, Alicia ;
Torregrosa, Juan R. ;
Vassileva, Maria P. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) :11496-11504
[6]   Efficient high-order methods based on golden ratio for nonlinear systems [J].
Cordero, Alicia ;
Hueso, Jose L. ;
Martinez, Eulalia ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4548-4556
[7]   A modified Newton-Jarratt's composition [J].
Cordero, Alicia ;
Hueso, Jose L. ;
Martinez, Eulalia ;
Torregrosa, Juan R. .
NUMERICAL ALGORITHMS, 2010, 55 (01) :87-99
[8]   Iterative methods of order four and five for systems of nonlinear equations [J].
Cordero, Alicia ;
Martinez, Eulalia ;
Torregrosa, Juan R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) :541-551
[9]   A fourth-order method from quadrature formulae to solve systems of nonlinear equations [J].
Darvishi, M. T. ;
Barati, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :257-261
[10]   An effective iterative method for computing real and complex roots of systems of nonlinear equations [J].
Nikkhah-Bahrami, M. ;
Oftadeh, R. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) :1813-1820