Numerical ranges of unbounded operators arising in quantum physics

被引:5
作者
Bebiano, N
Lemos, R [1 ]
da Providência, J
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Coimbra, Dept Math, P-3001454 Coimbra, Portugal
[3] Univ Coimbra, Dept Phys, P-3004516 Coimbra, Portugal
关键词
numerical range; unbounded linear operator;
D O I
10.1016/j.laa.2003.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Creation and annihilation operators are used in quantum physics as the building blocks of linear operators. acting on Hilbert spaces of many body systems. In quantum physics, pairing operators are defined in terms of those operators. In this paper, spectral properties of pairing operators are studied. The numerical ranges of pairing operators are investigated. In the context of matrix theory, the results give the numerical ranges of certain infinite tridiagonal matrices. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:259 / 279
页数:21
相关论文
共 11 条
[1]   On generalized numerical ranges of operators on an indefinite inner product space [J].
Bebiano, N ;
Lemos, R ;
da Providência, J ;
Soares, G .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) :203-233
[2]  
BEREZIN FA, 1966, METHODS 2 QUANTIZATI
[3]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[4]  
BROWN E, IN PRESS MATRICES EL
[5]   On geometric properties of the numerical range [J].
Chien, MT ;
Yeh, L ;
Yeh, YT ;
Lin, FZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 274 :389-410
[6]   On the numerical range of tridiagonal operators [J].
Chien, MT .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :203-214
[7]   FIELDS OF VALUES AND ITERATIVE METHODS [J].
EIERMANN, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 180 :167-197
[8]  
Gustafson K. E., 1997, Numerical range
[9]  
Halmos P. R., 1982, HILBERT SPACE PROBLE
[10]  
Li C.-K, 1998, Electron. J. Linear Algebra, V3, P31