Global regularity and stability of solutions to obstacle problems with nonstandard growth

被引:29
作者
Eleuteri, Michela [1 ]
Harjulehto, Petteri [2 ]
Lukkari, Teemu [3 ]
机构
[1] Univ Verona, I-37134 Verona, Italy
[2] Univ Turku, Dept Math, Turku 20014, Finland
[3] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
来源
REVISTA MATEMATICA COMPLUTENSE | 2013年 / 26卷 / 01期
基金
芬兰科学院;
关键词
Obstacle problem; Nonstandard growth; Global higher integrability; Boundary regularity; Stability; NONLINEAR ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; SOBOLEV SPACES; FUNCTIONALS; BOUNDARY;
D O I
10.1007/s13163-011-0088-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity properties of solutions to the single and double obstacle problem with non standard growth. Our main results are a global reverse Holder inequality, Holder continuity up to the boundary, and stability of solutions with respect to continuous perturbations in the variable growth exponent.
引用
收藏
页码:147 / 181
页数:35
相关论文
共 45 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
Alkhutov YA, 1997, DIFF EQUAT+, V33, P1653
[4]  
[Anonymous], 1988, Ann. Acad. Sci. Fenn. Ser. A Math. Dissertationes
[5]  
[Anonymous], 1995, RUSSIAN J MATH PHYS
[6]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[7]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[8]  
[Anonymous], 2004, Izv. Akad. Nauk SSSR, Ser. Mat., DOI 10.4213/im509
[9]  
[Anonymous], 1976, Vestnik Leningrad Univ. Math.
[10]  
[Anonymous], 2000, ELECTRORHEOLOGICAL F