Quantum adiabatic Markovian master equations

被引:227
作者
Albash, Tameem [1 ,2 ]
Boixo, Sergio [2 ,3 ,4 ]
Lidar, Daniel A. [2 ,4 ,5 ]
Zanardi, Paolo [1 ,2 ]
机构
[1] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Inst Informat Sci, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
美国国家科学基金会;
关键词
EVOLUTION; SYSTEMS;
D O I
10.1088/1367-2630/14/12/123016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state.
引用
收藏
页数:40
相关论文
共 54 条
[21]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[22]   COMPLEX GEOMETRICAL PHASES FOR DISSIPATIVE SYSTEMS [J].
GARRISON, JC ;
WRIGHT, EM .
PHYSICS LETTERS A, 1988, 128 (3-4) :177-181
[23]  
Haag R., 1967, COMMUN MATH PHYS, V5, P215, DOI [10.1007/BF01646342, DOI 10.1007/BF01646342]
[24]   Effective Hamiltonian approach to open systems and its applications [J].
Huang, X. L. ;
Yi, X. X. ;
Wu, Chunfeng ;
Feng, X. L. ;
Yu, S. X. ;
Oh, C. H. .
PHYSICAL REVIEW A, 2008, 78 (06)
[25]   Bounds for the adiabatic approximation with applications to quantum computation [J].
Jansen, Sabine ;
Ruskai, Mary-Beth ;
Seiler, Ruedi .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)
[26]   Quantum annealing with manufactured spins [J].
Johnson, M. W. ;
Amin, M. H. S. ;
Gildert, S. ;
Lanting, T. ;
Hamze, F. ;
Dickson, N. ;
Harris, R. ;
Berkley, A. J. ;
Johansson, J. ;
Bunyk, P. ;
Chapple, E. M. ;
Enderud, C. ;
Hilton, J. P. ;
Karimi, K. ;
Ladizinsky, E. ;
Ladizinsky, N. ;
Oh, T. ;
Perminov, I. ;
Rich, C. ;
Thom, M. C. ;
Tolkacheva, E. ;
Truncik, C. J. S. ;
Uchaikin, S. ;
Wang, J. ;
Wilson, B. ;
Rose, G. .
NATURE, 2011, 473 (7346) :194-198
[27]   General adiabatic evolution with a gap condition [J].
Joye, Alain .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 275 (01) :139-162
[28]   ON THE ADIABATIC THEOREM OF QUANTUM MECHANICS [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1950, 5 (06) :435-439
[29]   Absence of Vacuum Induced Berry Phases without the Rotating Wave Approximation in Cavity QED [J].
Larson, Jonas .
PHYSICAL REVIEW LETTERS, 2012, 108 (03)
[30]   DYNAMICS OF THE DISSIPATIVE 2-STATE SYSTEM [J].
LEGGETT, AJ ;
CHAKRAVARTY, S ;
DORSEY, AT ;
FISHER, MPA ;
GARG, A ;
ZWERGER, W .
REVIEWS OF MODERN PHYSICS, 1987, 59 (01) :1-85