Quantum adiabatic Markovian master equations

被引:220
作者
Albash, Tameem [1 ,2 ]
Boixo, Sergio [2 ,3 ,4 ]
Lidar, Daniel A. [2 ,4 ,5 ]
Zanardi, Paolo [1 ,2 ]
机构
[1] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Inst Informat Sci, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
美国国家科学基金会;
关键词
EVOLUTION; SYSTEMS;
D O I
10.1088/1367-2630/14/12/123016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state.
引用
收藏
页数:40
相关论文
共 54 条
  • [11] Necessary condition for the quantum adiabatic approximation
    Boixo, S.
    Somma, R. D.
    [J]. PHYSICAL REVIEW A, 2010, 81 (03)
  • [12] Boixo S, 2009, QUANTUM INF COMPUT, V9, P833
  • [13] Proof of Adiabatic law
    Born, M.
    Fock, V.
    [J]. ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4): : 165 - 180
  • [14] Breuer H.-P., 2007, The Theory of Open Quantum Systems
  • [15] Robustness of adiabatic quantum computation
    Childs, AM
    Farhi, E
    Preskill, J
    [J]. PHYSICAL REVIEW A, 2002, 65 (01): : 123221 - 1232210
  • [16] Comparat D, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.138902
  • [17] CAZM - A CIRCUIT ANALYZER WITH MACROMODELING
    COUGHRAN, WM
    GROSSE, E
    ROSE, DJ
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1983, 30 (09) : 1207 - 1213
  • [18] OPEN QUANTUM SYSTEMS WITH TIME-DEPENDENT HAMILTONIANS AND THEIR LINEAR RESPONSE
    DAVIES, EB
    SPOHN, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (05) : 511 - 523
  • [19] Effects of dissipation on an adiabatic quantum search algorithm
    de Vega, Ines
    Banuis, Mari Carmen
    Perez, A.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [20] Adiabatic approximation for quantum dissipative systems: Formulation, topology, and superadiabatic tracking
    Dridi, G.
    Guerin, S.
    Jauslin, H. R.
    Viennot, D.
    Jolicard, G.
    [J]. PHYSICAL REVIEW A, 2010, 82 (02)