Quantum adiabatic Markovian master equations

被引:227
作者
Albash, Tameem [1 ,2 ]
Boixo, Sergio [2 ,3 ,4 ]
Lidar, Daniel A. [2 ,4 ,5 ]
Zanardi, Paolo [1 ,2 ]
机构
[1] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Inst Informat Sci, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
基金
美国国家科学基金会;
关键词
EVOLUTION; SYSTEMS;
D O I
10.1088/1367-2630/14/12/123016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state.
引用
收藏
页数:40
相关论文
共 54 条
[1]   Pure decoherence in quantum systems [J].
Alicki, R .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2004, 11 (01) :53-61
[2]   Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit [J].
Alicki, Robert ;
Lidar, Daniel A. ;
Zanardi, Paolo .
PHYSICAL REVIEW A, 2006, 73 (05)
[3]   Thermally assisted adiabatic quantum computation [J].
Amin, M. H. S. ;
Love, Peter J. ;
Truncik, C. J. S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[4]   Role of single-qubit decoherence time in adiabatic quantum computation [J].
Amin, M. H. S. ;
Truncik, C. J. S. ;
Averin, D. V. .
PHYSICAL REVIEW A, 2009, 80 (02)
[5]   Consistency of the Adiabatic Theorem [J].
Amin, M. H. S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[6]  
[Anonymous], ARXIV10053034
[7]   ADIABATIC THEOREMS AND APPLICATIONS TO THE QUANTUM HALL-EFFECT [J].
AVRON, JE ;
SEILER, R ;
YAFFE, LG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (01) :33-49
[8]   TRANSIENT SIMULATION OF SILICON DEVICES AND CIRCUITS [J].
BANK, RE ;
COUGHRAN, WM ;
FICHTNER, W ;
GROSSE, EH ;
ROSE, DJ ;
SMITH, RK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1985, 32 (10) :1992-2007
[9]  
Bhatia Rajendra, 1997, Matrix Analysis: Graduate Texts in Mathematics, V169
[10]  
Blum K, 2010, PHYS ATOMS MOL DENSI