Harnack inequality for degenerate and singular operators of p-Laplacian type on Riemannian manifolds

被引:3
作者
Kim, Soojung [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; BAKELMAN-PUCCI ESTIMATE; VISCOSITY SOLUTIONS; ELLIPTIC-EQUATIONS; HARMONIC-FUNCTIONS; CURVATURE;
D O I
10.1007/s00208-016-1372-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study viscosity solutions to degenerate and singular elliptic equations of p-Laplacian type on Riemannian manifolds. The Krylov-Safonov type Harnack inequality for the p-Laplacian operators with is established on the manifolds with Ricci curvature bounded from below based on ABP type estimates. We also prove the Harnack inequality for nonlinear p-Laplacian type operators assuming that a nonlinear perturbation of Ricci curvature is bounded below.
引用
收藏
页码:1721 / 1785
页数:65
相关论文
共 36 条
[1]  
ALEKSANDROV AD, 1939, UCHENYE ZAPISKI LENI, V6, P3
[2]  
[Anonymous], J EUR MATH IN PRESS
[3]  
[Anonymous], 1964, Geometry of Manifolds
[4]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[5]  
[Anonymous], 2007, DIRICHLET PROBLEM SI
[6]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[7]   Quasilinear elliptic inequalities on complete Riemannian manifolds [J].
Antonini, Paolo ;
Mugnai, Dimitri ;
Pucci, Patrizia .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (06) :582-600
[8]   On the Aleksandrov-Bakel'man-Pucci Estimate for Some Elliptic and Parabolic Nonlinear Operators [J].
Argiolas, Roberto ;
Charro, Fernando ;
Peral, Ireneo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) :875-917
[9]   Regularization by sup-inf convolutions on Riemannian manifolds: An extension of Lasry-Lions theorem to manifolds of bounded curvature [J].
Azagra, D. ;
Ferrera, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) :994-1024
[10]   Viscosity solutions to second order partial differential equations on Riemannian manifolds [J].
Azagra, Daniel ;
Ferrera, Juan ;
Sanz, Beatriz .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) :307-336