Class fields generated by coordinates of elliptic curves

被引:1
作者
Jung, Ho Yun [1 ]
Koo, Ja Kyung [2 ]
Shin, Dong Hwa [3 ]
机构
[1] Dankook Univ, Dept Math, Cheonan Si 31116, Chungnam, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
[3] Hankuk Univ Foreign Studies, Dept Math, Yongin 17035, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
class field theory; complex multiplication; modular functions;
D O I
10.1515/math-2022-0502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an imaginary quadratic field different from Q (root-1 ) and Q (root-3). For a nontrivial integral ideal m of K, let K-m be the ray class field modulo m. By using some inequalities on special values of modular functions, we show that a single x-coordinate of a certain elliptic curve generates K-m over K.
引用
收藏
页码:1145 / 1158
页数:14
相关论文
共 17 条
[1]  
Cox D., 2013, Pure and Applied Mathematics (Hoboken)
[2]  
Dirichlet J.P.G.L., 1894, ZAHLENTHEORIE, V4th
[3]   Binary quadratic forms and ray class groups [J].
Eum, Ick Sun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :695-720
[4]  
Frei G., 2014, Contributions in Mathematical and Computational Science, V5
[5]  
Gauss C.F, 1801, Disquisitiones arithmeticae
[6]   On some extensions of Gauss' work and applications [J].
Jung, Ho Yun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
OPEN MATHEMATICS, 2020, 18 :1915-1934
[7]   GENERATION OF RAY CLASS FIELDS MODULO 2, 3, 4 OR 6 BY USING THE WEBER FUNCTION [J].
Jung, Ho Yun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) :343-372
[8]   On a problem of Hasse and Ramachandra [J].
Koo, Ja Kyung ;
Shin, Dong Hwa ;
Yoon, Dong Sung .
OPEN MATHEMATICS, 2019, 17 :131-140
[9]   On some arithmetic properties of Siegel functions [J].
Koo, Ja Kyung ;
Shin, Dong Hwa .
MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (01) :137-177
[10]  
Lang S., 1987, Elliptic Functions, V2nd ed., DOI 10.1007/978-1-4757-1949-9