Deeply fluorinated multi-wall carbon nanotubes for high energy and power densities lithium/carbon fluorides battery

被引:77
作者
Li, Yu [1 ,2 ]
Feng, Yiyu [1 ,2 ]
Feng, Wei [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Composite & Funct Mat, Tianjin 300072, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Carbon fluoride; Primary lithium battery; Carbon nanotubes; Cathode; High power density; ELECTRODE MATERIALS; TEMPERATURE; PERFORMANCE; MECHANISM;
D O I
10.1016/j.electacta.2013.06.086
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Deeply fluorinated multi-wall carbon nanotubes (F-MWCNTs) with different diameters are prepared using the mixture of fluorine/nitrogen gas, and the molar ratio of fluorine to carbon is controlled to be approximate to 1. The electrochemical performances of F-MWCNTs are tested as the cathode material in primary lithium battery. The discharge rate of 4 C can be applied for these F-MWCNTs and F-MWCNTs with average diameter larger than 50 nm can support the high discharge rate up to 5C delivering a maximum power density of 7114.1W kg(-1), associated with a high 1923 Wh kg(-1) energy density. The conductive networks of intimately contacting MWCNTs in nano-scale and the intrinsic fast rate capability of one-dimensional nanostructures account for the high power density of F-MWCNTs. Moreover, F-MWCNTs with larger diameter exhibits better electrochemical performances. Based on the pore size distribution and impedance results, it is proposed that the F-MWCNTs with larger diameters can effectively avoid the surface and networks of F-MWCNTs being blocked by the enlarged LiF crystals, and hence display the better electrochemical performances. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 40 条
[1]   Fluoride based electrode materials for advanced energy storage devices [J].
Amatucci, Glenn G. ;
Pereira, Nathalie .
JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) :243-262
[2]  
[Anonymous], 1975, Introduction to infrared and Raman spectroscopy
[3]   Experimental and computational investigations of the properties of fluorinated single-walled carbon nanotubes [J].
Bettinger, HF .
CHEMPHYSCHEM, 2003, 4 (12) :1283-1289
[4]   Reactivity of carbon nanofibers with fluorine gas [J].
Chamssedine, F. ;
Dubois, M. ;
Guerin, K. ;
Giraudet, J. ;
Masin, F. ;
Ivanov, D. A. ;
Vidal, L. ;
Yazami, R. ;
Hamwi, A. .
CHEMISTRY OF MATERIALS, 2007, 19 (02) :161-172
[5]   Hybrid cathode lithium batteries for implantable medical applications [J].
Chen, Kaimin ;
Merritt, Donald R. ;
Howard, William G. ;
Schmidt, Craig L. ;
Skarstad, Paul A. .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :837-840
[6]   Fast electrochemistry of conductive polymer nanotubes: Synthesis, mechanism, and application [J].
Cho, Seung Il ;
Lee, Sang Bok .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (06) :699-707
[7]   Tuning the discharge potential of fluorinated carbon used as electrode in primary lithium battery [J].
Dubois, M. ;
Guerin, K. ;
Zhang, W. ;
Ahmad, Y. ;
Hamwi, A. ;
Fawal, Z. ;
Kharbache, H. ;
Masin, F. .
ELECTROCHIMICA ACTA, 2012, 59 :485-491
[8]  
George S., 2004, Infrared and Raman Characteristic Group Frequencies
[9]   Improvements of the electrochemical features of graphite fluorides in primary lithium battery by electrodeposition of polypyrrole [J].
Groult, H. ;
Julien, C. M. ;
Bahloul, A. ;
Leclerc, S. ;
Briot, E. ;
Mauger, A. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (10) :1074-1076
[10]   Cutting single-wall carbon nanotubes through fluorination [J].
Gu, Z ;
Peng, H ;
Hauge, RH ;
Smalley, RE ;
Margrave, JL .
NANO LETTERS, 2002, 2 (09) :1009-1013