A NEW CLASS OF FUNCTIONS FOR MEASURING SOLUTION INTEGRALITY IN THE FEASIBILITY PUMP APPROACH

被引:16
作者
De Santis, M. [1 ]
Lucidi, S. [1 ]
Rinaldi, F. [2 ]
机构
[1] Univ Roma, Dipartimento Ingn Informat Automat & Gestionale S, I-2500185 Rome, Italy
[2] Univ Padua, Dipartimento Matemat, I-6335121 Padua, Italy
关键词
mixed integer programming; concave penalty functions; Frank-Wolfe algorithm; feasibility problem; INTEGER NONLINEAR PROGRAMS; OPTIMIZATION; PIVOT;
D O I
10.1137/110855351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mixed integer optimization is a powerful tool for modeling many optimization problems arising from real-world applications. Finding a first feasible solution represents the first step for several mixed integer programming (MIP) solvers. The feasibility pump is a heuristic for finding feasible solutions to mixed integer linear programming (MILP) problems which is effective even when dealing with hard MIP instances. In this work, we start by interpreting the feasibility pump as a Frank-Wolfe method applied to a nonsmooth concave merit function. Then we define a general class of functions that can be included in the feasibility pump scheme for measuring solution integrality, and we identify some merit functions belonging to this class. We further extend our approach by dynamically combining two different merit functions. Finally, we define a new version of the feasibility pump algorithm, which includes the original version of the feasibility pump as a special case, and we present computational results on binary MILP problems showing the effectiveness of our approach.
引用
收藏
页码:1575 / 1606
页数:32
相关论文
共 35 条
[11]   A feasibility pump heuristic for general mixed-integer problems [J].
Bertacco, Livio ;
Fischetti, Matteo ;
Lodi, Andrea .
DISCRETE OPTIMIZATION, 2007, 4 (01) :63-76
[12]  
Boland N.L., 2012, 201203 COPT U NEWC
[13]   An algorithmic framework for convex mixed integer nonlinear programs [J].
Bonami, Pierre ;
Biegler, Lorenz T. ;
Conna, Andrew R. ;
Cornuejols, Gerard ;
Grossmann, Ignacio E. ;
Laird, Carl D. ;
Lee, Jon ;
Lodi, Andrea ;
Margot, Francois ;
Sawaya, Nicolas ;
Wachter, Andreas .
DISCRETE OPTIMIZATION, 2008, 5 (02) :186-204
[14]   A Feasibility Pump for mixed integer nonlinear programs [J].
Bonami, Pierre ;
Cornuejols, Gerard ;
Lodi, Andrea ;
Margot, Francois .
MATHEMATICAL PROGRAMMING, 2009, 119 (02) :331-352
[15]   A storm of feasibility pumps for nonconvex MINLP [J].
D'Ambrosio, Claudia ;
Frangioni, Antonio ;
Liberti, Leo ;
Lodi, Andrea .
MATHEMATICAL PROGRAMMING, 2012, 136 (02) :375-402
[16]   Exploring relaxation induced neighborhoods to improve MIP solutions [J].
Danna, E ;
Rothberg, E ;
Le Pape, C .
MATHEMATICAL PROGRAMMING, 2005, 102 (01) :71-90
[17]  
DE SANTIS M., 2013, 2 DIS U ROM
[18]  
DE SANTIS M., 2010, 15 DIS U ROM
[19]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[20]   Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer programming [J].
Eckstein, Jonathan ;
Nediak, Mikhail .
JOURNAL OF HEURISTICS, 2007, 13 (05) :471-503