Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems

被引:71
作者
Alias, LJ [1 ]
Romero, A [1 ]
Sanchez, M [1 ]
机构
[1] UNIV GRANADA,DEPT GEOMETRIA & TOPOL,E-18071 GRANADA,SPAIN
关键词
D O I
10.2748/tmj/1178225107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spacelike graphs of constant mean curvature over compact Riemannian manifolds in Lorentzian manifolds with constant sectional curvature are studied. The corresponding Calabi-Bernstein type problems are stated. In the case of nonpositive sectional curvature all their solutions are obtained, and for positive sectional curvature well-known results are extended.
引用
收藏
页码:337 / 345
页数:9
相关论文
共 14 条
[1]   ON SPACELIKE HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN THE DE SITTER SPACE [J].
AKUTAGAWA, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) :13-19
[2]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[3]  
ALIAS LJ, 1995, AN FIS, P177
[4]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[5]  
CALABI E, 1968, P S PURE MATH, V15, P223
[6]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[7]  
CHOQUETBRUHAT Y, 1975, CR ACAD SCI A MATH, V281, P577
[8]   REMARKS ON EXISTENCE OF SPACELIKE HYPERSURFACES OF CONSTANT MEAN CURVATURE [J].
GODDARD, AJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (NOV) :489-495
[10]  
O'Neill B., 1983, SEMIRIEMANNIAN GEOME