Analysis of criteria VaR and CVaR

被引:19
作者
Kibzun, AI [1 ]
Kuznetsov, EA [1 ]
机构
[1] Moscow Inst Aviat Technol, Dept Probabil Theory, Moscow 125993, Russia
基金
俄罗斯基础研究基金会;
关键词
Value-at-Risk (quantile function); Conditional Value-at-Risk (integeral quantile function); criteria for decision-making under risk; convexity of VaR and CVaR; Stochastic programming; portfolio selection;
D O I
10.1016/j.jbankfin.2005.04.003
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Criteria VaR (Value-at-Risk) and CVaR (Conditional Value-at-Risk), which are well-known in financial mathematics, are compared. Some connection between them is established. Ways of choice a level of confidence probability for the quantile optimization problem are suggested. The ways are based on some equations of balance between VaR and CVaR. Examples are discussed. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:779 / 796
页数:18
相关论文
共 14 条
[1]  
[Anonymous], IZV AKAD NAUK SSSR F
[2]   The uniform distribution: A rigorous justification for its use in robustness analysis [J].
Barmish, BR ;
Lagoa, CM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1997, 10 (03) :203-222
[3]  
Kall P, 1994, STOCHASTIC PROGRAMMI
[4]  
Kibzun A.I., 1996, STOCHASTIC PROGRAMMI
[5]  
Kibzun AI, 1998, AUTOMAT REM CONTR+, V59, P1587
[6]   Comparison of VaR and CVaR criteria [J].
Kibzun, AI ;
Kuznetsov, EA .
AUTOMATION AND REMOTE CONTROL, 2003, 64 (07) :1154-1164
[7]   Optimal control of the portfolio [J].
Kibzun, AI ;
Kuznetsov, EA .
AUTOMATION AND REMOTE CONTROL, 2001, 62 (09) :1489-1501
[8]   PORTFOLIO SELECTION [J].
Markowitz, Harry .
JOURNAL OF FINANCE, 1952, 7 (01) :77-91
[9]   Minimax optimization of investment portfolio by quantile criterion [J].
Pankov, AR ;
Platonov, EN ;
Semenikhin, KV .
AUTOMATION AND REMOTE CONTROL, 2003, 64 (07) :1122-1137
[10]  
Prekopa A., 2013, Stochastic programming, V324