A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems

被引:28
作者
Danilo Montoya, Oscar [1 ]
Garces, Alejandro [2 ]
Espinosa-Perez, Gerardo [3 ]
机构
[1] UTB, Km 1 Via Turbaco, Cartagena, Colombia
[2] Univ Tecnol Pereira, AA 97, Pereira 660003, Colombia
[3] Univ Nacl Autonoma Mexico, Coyoacan 04510, DF, Mexico
关键词
Electrical energy storage systems (EESS); Generalized mathematical model; Interconnection and damping assignment passivity-based control (IDA-PBC); Supercapacitor energy storage (SCES); Superconducting magnetic energy storage (SMES); DESIGN; MODEL; TECHNOLOGIES; MICROGRIDS; AC;
D O I
10.1016/j.est.2018.01.018
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a generalized interconnection and damping assignment passivity-based control (IDA-PBC) for electric energy storage systems (EESS) such as: superconducting magnetic energy storage (SMES) and supercapacitor energy storage (SCES). A general framework is proposed to represent the dynamical behavior of EESS interconnected to the electrical distribution system through forced commutated power electronic converters. A voltage source converter (VSC) and a pulse-width modulated current source converter (PWM-CSC) are used to integrate SCES and SMES systems to the electrical power systems respectively. The proposed control strategy allows active and reactive power interchange between the EESS and electric distribution grids independently, guaranteeing globally asymptotically convergence in the sense of Lyapunov via Hamiltonian formulation. Simulation results show the effectiveness and robustness of the generalized IDA-PBC to operate EESS as active and reactive power compensator in order to improve operative conditions in power distribution grids under balanced and unbalanced conditions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 40 条
[21]   Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey [J].
Nageshrao, Subramanya P. ;
Lopes, Gabriel A. D. ;
Jeltsema, Dimitri ;
Babuska, Robert .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (05) :1223-1238
[22]   Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems [J].
Nunna, Kameswarie ;
Sassano, Mario ;
Astolfi, Alessandro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) :2350-2361
[23]  
Ortega A, 2017, IEEE T POWER SYST, V32, P2445, DOI 10.1109/TPWRS.2016.2602211
[24]   Generalized Model of VSC-Based Energy Storage Systems for Transient Stability Analysis [J].
Ortega, Alvaro ;
Milano, Federico .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) :3369-3380
[25]   Energy storage systems in modern grids-Matrix of technologies and applications [J].
Palizban, Omid ;
Kauhaniemi, Kimmo .
JOURNAL OF ENERGY STORAGE, 2016, 6 :248-259
[26]   State of the Art in Research on Microgrids: A Review [J].
Parhizi, Sina ;
Lotfi, Hossein ;
Khodaei, Amin ;
Bahramirad, Shay .
IEEE ACCESS, 2015, 3 :890-925
[27]  
Perko L, 2013, DIFFERENTIAL EQUATIO
[28]   AC and DC technology in microgrids: A review [J].
Planas, Estefania ;
Andreu, Jon ;
Ignacio Garate, Jose ;
Martinez de Alegria, Inigo ;
Ibarra, Edorta .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 43 :726-749
[29]   Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system [J].
Rahim, A. H. M. A. ;
Nowicki, E. P. .
ENERGY CONVERSION AND MANAGEMENT, 2012, 59 :96-102
[30]   On the passivity based control of irreversible processes: A port-Hamiltonian approach [J].
Ramirez, Hector ;
Le Gorrec, Yann ;
Maschke, Bernhard ;
Couenne, Francoise .
AUTOMATICA, 2016, 64 :105-111