Existence of periodic travelling waves solutions in predator prey model with diffusion

被引:19
作者
Yafia, Radouane [1 ]
Aziz-Alaoui, M. A. [2 ]
机构
[1] Ibn Zohr Univ, Polydisciplinary Fac Ouarzazate, Ouarzazate, Morocco
[2] Lab Math Appl, F-76058 Le Havre, France
关键词
Predator prey model; Diffusion; Stability; Periodic travelling waves; Hopf bifurcation; MODIFIED LESLIE-GOWER; II SCHEMES; CYCLIC POPULATIONS; GLOBAL STABILITY; FIELD; TIME;
D O I
10.1016/j.apm.2012.08.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the qualitative analysis of the travelling waves solutions of a reaction diffusion model that refers to the competition between the predator and prey with modified Leslie-Gower and Holling type II schemes. The well posedeness of the problem is proved. We establish sufficient conditions for the asymptotic stability of the unique nontrivial positive steady state of the model by analyzing roots of the forth degree exponential polynomial characteristic equation. We also prove the existence of a Hopf bifurcation which leads to periodic oscillating travelling waves by considering the diffusion coefficient as a parameter of bifurcation. Numerical simulations are given to illustrate the analytical study. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3635 / 3644
页数:10
相关论文
共 17 条
[1]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[2]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[3]   Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.) [J].
Bierman, SM ;
Fairbairn, JP ;
Petty, SJ ;
Elston, DA ;
Tidhar, D ;
Lambin, X .
AMERICAN NATURALIST, 2006, 167 (04) :583-590
[4]   Waves of larch budmoth outbreaks in the European Alps [J].
Bjornstad, ON ;
Peltonen, M ;
Liebhold, AM ;
Baltensweiler, W .
SCIENCE, 2002, 298 (5595) :1020-1023
[5]  
Hal LS, 1995, MATH SURVEYS MONOGRA, V41
[6]  
Hassard B.D., 1981, Theory and Applications of Hopf Bifurcation
[7]   Existence of traveling wave solutions in a diffusive predator-prey model [J].
Huang, JH ;
Lu, G ;
Ruan, SG .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (02) :132-152
[8]   Scale invariant spatio-temporal patterns of field vole density [J].
Mackinnon, JL ;
Petty, SJ ;
Elston, DA ;
Thomas, CJ ;
Sherratt, TN ;
Lambin, X .
JOURNAL OF ANIMAL ECOLOGY, 2001, 70 (01) :101-111
[9]  
Marsden J.E., 1976, APPL MATH SERIES, V19
[10]   Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay [J].
Nindjin, A. F. ;
Aziz-Alaoui, M. A. ;
Cadivel, M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) :1104-1118