Multiscale hierarchical and heterogeneous mechanical response of additively manufactured novel Al alloy investigated by high-resolution nanoindentation mapping

被引:20
作者
Dhal, Abhijeet [1 ,2 ]
Thapliyal, Saket [1 ,2 ,3 ]
Gaddam, Supreeth [1 ,2 ]
Agrawal, Priyanka [1 ,2 ]
Mishra, Rajiv S. [1 ,2 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
[2] Univ North Texas, Adv Mat & Mfg Proc Inst, Denton, TX 76203 USA
[3] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN USA
关键词
MICROSTRUCTURE; SOLIDIFICATION; INDENTATION; GRADIENT;
D O I
10.1038/s41598-022-23083-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Smart alloying and microstructural engineering mitigate challenges associated with laser-powder bed fusion additive manufacturing (L-PBFAM). A novel Al-Ni-Ti-Zr alloy utilized grain refinement by heterogeneous nucleation and eutectic solidification to achieve superior performance-printability synergy. Conventional mechanical testing cannot delineate complex micromechanics of such alloys. This study combined multiscale nanomechanical and microstructural mapping to illustrate mechanical signatures associated with hierarchical heat distribution and rapid solidification of L-PBFAM. The disproportionate hardening effect imparted by Al-3(Ti,Zr) precipitates in the pool boundaries and the semi-solid zone was successfully demonstrated. Nanomechanical response associated with heterogeneity in particle volume fraction and coherency across melt pool was interpreted from nanoindentation force-displacement curves. The hardness map effectively delineated the weakest and strongest sections in the pool with microscopic accuracy. The presented approach serves as a high throughput methodology to establish the chemistry-processing-microstructure-properties correlation of newly designed alloys for L-PBFAM.
引用
收藏
页数:8
相关论文
共 35 条
[1]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[2]   The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J].
Aboulkhair, Nesma T. ;
Maskery, Ian ;
Tuck, Chris ;
Ashcroft, Ian ;
Everitt, Nicola M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 667 :139-146
[3]   Transient simulation of particle transport and deposition in the laser powder bed fusion process: A new approach to model particle and heat ejection from the melt pool [J].
Altmeppen, Johannes ;
Nekic, Robert ;
Wagenblast, Philipp ;
Staudacher, Stephan .
ADDITIVE MANUFACTURING, 2021, 46
[4]   Non-linear deformation mechanisms during nanoindentation [J].
Bahr, DF ;
Kramer, DE ;
Gerberich, WW .
ACTA MATERIALIA, 1998, 46 (10) :3605-3617
[5]   Multi-scale microstuctural investigation of a new Al-Mn-Ni-Cu-Zr aluminium alloy processed by laser powder bed fusion [J].
Buttard, Maxence ;
Chehab, Bechir ;
Shahani, Ravi ;
Robaut, Florence ;
Renou, Gilles ;
Tassin, Catherine ;
Rauch, Edgar ;
Donnadieu, Patricia ;
Deschamps, Alexis ;
Blandin, Jean-Jacques ;
Martin, Guilhem .
MATERIALIA, 2021, 18
[6]   Microscale residual stresses in additively manufactured stainless steel [J].
Chen, Wen ;
Voisin, Thomas ;
Zhang, Yin ;
Florien, Jean-Baptiste ;
Spadaccini, Christopher M. ;
McDowell, David L. ;
Zhu, Ting ;
Wang, Y. Morris .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Scientific, technological and economic issues in metal printing and their solutions [J].
DebRoy, T. ;
Mukherjee, T. ;
Milewski, J. O. ;
Elmer, J. W. ;
Ribic, B. ;
Blecher, J. J. ;
Zhang, W. .
NATURE MATERIALS, 2019, 18 (10) :1026-1032
[8]   Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys [J].
Li, Guichuan ;
Brodu, Etienne ;
Soete, Jeroen ;
Wei, Huiliang ;
Liu, Tingting ;
Yang, Tao ;
Liao, Wenhe ;
Vanmeensel, Kim .
ADDITIVE MANUFACTURING, 2021, 47
[9]   Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J].
Li, Ruidi ;
Wang, Minbo ;
Li, Zhiming ;
Cao, Peng ;
Yuan, Tiechui ;
Zhu, Hongbin .
ACTA MATERIALIA, 2020, 193 :83-98
[10]   Microstructure of selective laser melted AlSi10Mg alloy [J].
Liu, Xihe ;
Zhao, Congcong ;
Zhou, Xin ;
Shen, Zhijian ;
Liu, Wei .
MATERIALS & DESIGN, 2019, 168