Local-global principle for reduced norms over function fields of p-adic curves

被引:11
作者
Parimala, R. [1 ]
Preeti, R. [2 ]
Suresh, V. [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr NE, Atlanta, GA 30322 USA
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
基金
美国国家科学基金会;
关键词
HASSE PRINCIPLE; U-INVARIANT;
D O I
10.1112/S0010437X17007618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a (non-archimedean) local field and let F be the function field of a curve over K. Let D be a central simple algebra over F of period n and lambda is an element of F*. We show that if n is coprime to the characteristic of the residue field of K and D. (lambda) 0 in H-3 (F, mu(circle times)(n)2), then lambda is a reduced norm from D. This leads to a Hasse principle for the group SL1 (D), namely, an element lambda is an element of F* is a reduced norm from D if and only if it is a reduced norm locally at all discrete valuations of F.
引用
收藏
页码:410 / 458
页数:49
相关论文
共 32 条
  • [1] Albert A. A., 1961, American Mathematical Society Colloquium Publications, V24
  • [2] [Anonymous], MATH USSR IZV
  • [3] [Anonymous], 1969, Publ. Math. IHES
  • [4] [Anonymous], 2014, ASTEIRISQUE
  • [5] [Anonymous], 2008, ALGEBRA
  • [6] [Anonymous], U LECT SERIES
  • [7] [Anonymous], 1995, P S PURE MATH
  • [8] Auslander M., 1960, T AM MATH SOC, V97, P367, DOI DOI 10.2307/1993378
  • [9] Cassels J. W. S., 1967, Algebraic number theory
  • [10] Patching and local-global principles for homogeneous spaces over function fields of p-adic curves
    Colliot-Thelene, Jean-Louis
    Parimala, Raman
    Suresh, Venapally
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 1011 - 1033