We consider a nonlinear elliptic equation driven by the p-Laplacian with Dirichlet boundary conditions. Using variational techniques combined with the method of upper-lower solutions and suitable truncation arguments, we establish the existence of at least five nontrivial solutions. Two positive, two negative and a nodal (sign-changing) solution. Our framework of analysis incorporates both coercive and p-superlinear problems. Also the result on multiple constant sign solutions incorporates the case of concave-convex nonlinearities. (C) 2008 Elsevier Inc. All rights reserved.