Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian

被引:73
作者
Filippakis, Michael E. [1 ]
Papageorgiou, Nikolaos S. [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
p-Laplacian; constant sign solutions; nodal solutions; concave-convex nonlinearity; second deformation theorem; upper-lower solution; truncated functional;
D O I
10.1016/j.jde.2008.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear elliptic equation driven by the p-Laplacian with Dirichlet boundary conditions. Using variational techniques combined with the method of upper-lower solutions and suitable truncation arguments, we establish the existence of at least five nontrivial solutions. Two positive, two negative and a nodal (sign-changing) solution. Our framework of analysis incorporates both coercive and p-superlinear problems. Also the result on multiple constant sign solutions incorporates the case of concave-convex nonlinearities. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1883 / 1922
页数:40
相关论文
共 25 条
[1]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[2]  
Anane A., 1996, PITMAN RES NOTES MAT, V343, P1
[3]   Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian [J].
Anello, G ;
Cordaro, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :511-519
[4]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[5]   On a superlinear elliptic p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :149-175
[6]   A DIRICHLET PROBLEM INVOLVING CRITICAL EXPONENTS [J].
BOCCARDO, L ;
ESCOBEDO, M ;
PERAL, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1639-1648
[7]  
Carl S., 2003, ABSTR APPL ANAL, V7, P613
[8]  
Chang K.C, 1993, Infinite Dimensional Morse Theory and Multiple Solution Problems, V6
[9]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[10]  
Dancer E. N., 1995, Appl. Anal, V56, P193