Fuel cell catalyst degradation: Identical location electron microscopy and related methods

被引:63
作者
Arenz, Matthias [1 ,2 ]
Zana, Alessandro [1 ]
机构
[1] Univ Copenhagen, Dept Chem, Nanosci Ctr, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[2] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
关键词
Pt; Proton exchange membrane fuel cells; Degradation; IL-TEM; IL-SEM; Ex-situ investigations; ROTATING-DISK ELECTRODE; OXYGEN REDUCTION ACTIVITY; PT/C ELECTROCATALYST DEGRADATION; PLATINUM DISSOLUTION; IL-TEM; PARTICLE-SIZE; CARBON; NANOPARTICLES; STABILITY; MEMBRANE;
D O I
10.1016/j.nanoen.2016.04.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density; both essential for automotive applications. Its drawback is the use of carbon supported Pt or Pt alloys as the active catalyst. The scarce resources of Pt led to significant efforts in reducing the amount of Pt used in PEMFCs. Thanks to the advancements of these efforts, catalyst stability gained increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give a complete overview and cover all studies. Instead we concentrate on efforts of our and other research groups to apply identical location electron microscopy and related methods to study the degradation of PEMFC catalysts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 70 条
[1]   Comparative DEMS study on the electrochemical oxidation of carbon blacks [J].
Ashton, Sean J. ;
Arenz, Matthias .
JOURNAL OF POWER SOURCES, 2012, 217 :392-399
[2]   A DEMS study on the electrochemical oxidation of a high surface area carbon black [J].
Ashton, Sean J. ;
Arenz, Matthias .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) :1473-1475
[3]   Confined-Space Alloying of Nanoparticles for the Synthesis of Efficient PtNi Fuel-Cell Catalysts [J].
Baldizzone, Claudio ;
Mezzavilla, Stefano ;
Carvalho, Hudson W. P. ;
Meier, Josef Christian ;
Schuppert, Anna K. ;
Heggen, Marc ;
Galeano, Carolina ;
Grunwaldt, Jan-Dierk ;
Schueth, Ferdi ;
Mayrhofer, Karl J. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (51) :14250-14254
[4]  
Bard AJ., 1980, ELECTROCHEMICAL METH
[5]   Temperature effects on PEM fuel cells Pt/C catalyst degradation [J].
Bi, Wu ;
Fuller, Thomas. F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :B215-B221
[6]   PEM fuel cell Pt/C dissolution and deposition in nafion electrolyte [J].
Bi, Wu ;
Gray, Gary E. ;
Fuller, Thomas F. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (05) :B101-B104
[7]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[8]  
Buchi F.N., 2009, POLYM ELECTROLYTE FU
[9]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[10]  
Cherevko S., 2016, NANO ENERGY