Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space

被引:120
作者
Bereanu, Cristian [1 ]
Jebelean, Petru [2 ]
Torres, Pedro J. [3 ]
机构
[1] Acad Romana, Inst Math Simion Stoilow, RO-010702 Bucharest, Romania
[2] West Univ Timisoara, Dept Math, RO-300223 Timisoara, Romania
[3] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Dirichlet problem; Positive radial solutions; Mean curvature operator; Minkowski space; Leray-Schauder degree; Upper and lower solutions; HYPERSURFACES; NEUMANN; EQUATIONS; SYMMETRY; SURFACES;
D O I
10.1016/j.jfa.2013.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem with mean curvature operator in Minkowski space div(del v/root 1 - vertical bar del v vertical bar(2)) + lambda[mu(vertical bar x vertical bar)v(q)] = 0 in B(R), v = 0 on partial derivative B(R), where lambda > 0 is a parameter, q > 1, R > 0, mu : [0, infinity) -> R is continuous, strictly positive on (0, infinity) and B(R) = {x is an element of R-N: vertical bar x vertical bar < R}. Using upper and lower solutions and Leray-Schauder degree type arguments, we prove that there exists Lambda > 0 such that the problem has zero, at least one or at least two positive radial solutions according to lambda is an element of (0, Lambda), lambda = Lambda or lambda > Lambda. Moreover, Lambda is strictly decreasing with respect to R. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:644 / 659
页数:16
相关论文
共 21 条
[1]   On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem [J].
Alías, LJ ;
Palmer, B .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :454-458
[2]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[3]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[4]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[5]   Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (1-2) :113-122
[6]   Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :270-287
[7]   Multiple solutions for Neumann and periodic problems with singular φ-Laplacian [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (11) :3226-3246
[8]   Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :379-391
[9]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[10]   On a modified capillary equation [J].
Clement, P ;
Manasevich, R ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (02) :343-358