On the products of linear modal logics

被引:31
|
作者
Reynolds, M [1 ]
Zakharyaschev, M
机构
[1] Murdoch Univ, Sch Informat Technol, Perth, WA, Australia
[2] Kings Coll London, Dept Comp Sci, London WC2R 2LS, England
基金
俄罗斯基础研究基金会; 英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
modal logic; Kripke frame; Cartesian product; decidability;
D O I
10.1093/logcom/11.6.909
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study two-dimensional Cartesian products of modal logics determined by infinite or arbitrarily long finite linear orders and prove a general theorem showing that in many cases these products are undecidable, in particular, such are the squares of standard linear logics like K4.3, S4.3, GL.3, Grz.3, or the logic determined by the Cartesian square of any infinite linear order. This theorem solves a number of open problems posed by Gabbay and Shehtman. We also prove a sufficient condition for such products to be not recursively enumerable and give a simple axiomatization for the square K4.3 x K4.3 of the minimal liner logic using non-structural Gabbay-type inference rules.
引用
收藏
页码:909 / 931
页数:23
相关论文
共 50 条
  • [41] Decidability of Modal Logics of Non-k-Colorable Graphs
    Shapirovsky, Ilya
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2023, 2023, 13923 : 351 - 361
  • [42] Modal Logics Definable by Universal Three-Variable Formulas
    Kieronski, Emanuel
    Michaliszyn, Jakub
    Otop, Jan
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2011), 2011, 13 : 264 - 275
  • [43] Interpolation in weakly transitive modal logics
    A. V. Karpenko
    Algebra and Logic, 2012, 51 : 131 - 143
  • [44] Gamma graph calculi for modal logics
    Minghui Ma
    Ahti-Veikko Pietarinen
    Synthese, 2018, 195 : 3621 - 3650
  • [45] On modal logics of partial recursive functions
    Naumov P.
    Studia Logica, 2005, 81 (3) : 295 - 309
  • [46] Automorphisms of the Lattice of Classical Modal Logics
    Soncodi, Adrian
    STUDIA LOGICA, 2016, 104 (02) : 249 - 276
  • [47] Interpolation in weakly transitive modal logics
    Karpenko, A. V.
    ALGEBRA AND LOGIC, 2012, 51 (02) : 131 - 143
  • [48] Modal logics of some geometrical structures
    Shapirovsky, I. B.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (03) : 255 - 262
  • [49] On squares of modal logics with additional connectives
    V. B. Shehtman
    Proceedings of the Steklov Institute of Mathematics, 2011, 274 : 317 - 325
  • [50] Gamma graph calculi for modal logics
    Ma, Minghui
    Pietarinen, Ahti-Veikko
    SYNTHESE, 2018, 195 (08) : 3621 - 3650