A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.)

被引:105
|
作者
Huang, Ji [1 ]
Sun, Shujing [1 ]
Xu, Dongqing [1 ]
Lan, Hongxia [1 ]
Sun, Hui [1 ]
Wang, Zhoufei [1 ]
Bao, Yongmei [1 ]
Wang, Jianfei [1 ]
Tang, Haijuan [1 ]
Zhang, Hongsheng [1 ]
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rice; Zinc finger protein; Transcription factor; Abiotic stress; SALT TOLERANCE; EAR-MOTIF; TRANSCRIPTION FACTORS; DROUGHT TOLERANCE; ENHANCES DROUGHT; GENE; ARABIDOPSIS; PLAYS; EXPRESSION; FAMILY;
D O I
10.1007/s11103-012-9955-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The TFIIIA-type zinc finger transcription factors are involved in plant development and abiotic stress responses. Most TFIIIA-type zinc finger proteins are transcription repressors due to existence of an EAR-motif in their amino acid sequences. In this work, we found that ZFP182, a TFIIIA-type zinc finger protein, forms a homodimer in the nucleus and exhibits trans-activation activity in yeast cells. The deletion analysis indicated that a Leu-rich region at C-terminus is required for the trans-activation. Overexpression of ZFP182 significantly enhanced multiple abiotic stress tolerances, including salt, cold and drought tolerances in transgenic rice. Overexpression of ZFP182 promotes accumulation of compatible osmolytes, such as free proline and soluble sugars, in transgenic rice. ZFP182 activates the expression of OsP5CS encoding pyrroline-5-carboxylate synthetase and OsLEA3 under stress conditions, while OsDREB1A and OsDREB1B were regulated by ZFP182 under both normal and stress conditions. Interestingly, site-directed mutagenesis assay showed that DRE-like elements in ZFP182 promoter are involved in dehydration-induced expression of ZFP182. The yeast two-hybrid assay revealed that ZFP182 interacted with several ribosomal proteins including ZIURP1, an ubiquitin fused to ribosomal protein L40. The in vivo and in vitro interactions of ZFP182 and ZIURP1 were further confirmed by bimolecular fluorescence complementation and His pull-down assays. Our studies provide new clues in the understanding of the mechanisms for TFIIIA-type zinc finger transcription factor mediated stress tolerance and a candidate gene for improving stress tolerance in crops.
引用
收藏
页码:337 / 350
页数:14
相关论文
共 50 条
  • [41] Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.)
    Naik, Sushanta Kumar
    Das, Dilip Kumar
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2008, 81 (03) : 219 - 227
  • [42] Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings
    Thorny Chanu Thounaojam
    Piyalee Panda
    Shuvasish Choudhury
    Hemanta Kumar Patra
    Sanjib Kumar Panda
    Protoplasma, 2014, 251 : 61 - 69
  • [43] Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings
    Thounaojam, Thorny Chanu
    Panda, Piyalee
    Choudhury, Shuvasish
    Patra, Hemanta Kumar
    Panda, Sanjib Kumar
    PROTOPLASMA, 2014, 251 (01) : 61 - 69
  • [44] A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis
    Yuxiang Cheng
    Mei Long
    Biotechnology Letters, 2007, 29 : 1129 - 1134
  • [45] A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis
    Cheng, Yuxiang
    Long, Mei
    BIOTECHNOLOGY LETTERS, 2007, 29 (07) : 1129 - 1134
  • [46] Phosphorylation upon cold stress in rice (Oryza sativa L.) seedlings
    S. Komatsu
    H. Karibe
    T. Hamada
    R. Rakwal
    Theoretical and Applied Genetics, 1999, 98 : 1304 - 1310
  • [47] Phosphorylation upon cold stress in rice (Oryza sativa L.) seedlings
    Komatsu, S
    Karibe, H
    Hamada, T
    Rakwal, R
    THEORETICAL AND APPLIED GENETICS, 1999, 98 (08) : 1304 - 1310
  • [48] Response of rice (Oryza sativa L.) cultivars to elevated ozone stress
    Ambikapathi Ramya
    Periyasamy Dhevagi
    Sengottiyan Priyatharshini
    R. Saraswathi
    S. Avudainayagam
    S. Venkataramani
    Environmental Monitoring and Assessment, 2021, 193
  • [49] Response of rice (Oryza sativa L.) cultivars to elevated ozone stress
    Ramya, Ambikapathi
    Dhevagi, Periyasamy
    Priyatharshini, Sengottiyan
    Saraswathi, R.
    Avudainayagam, S.
    Venkataramani, S.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (12)
  • [50] High temperature stress and spikelet fertility in rice (Oryza sativa L.)
    Jagadish, S. V. K.
    Craufurd, P. Q.
    Wheeler, T. R.
    JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (07) : 1627 - 1635