Uncertainty on Multi-objective Optimization Problems

被引:1
作者
Costa, Lino [1 ]
Espirito Santo, Isabel A. C. P. [1 ]
Oliveira, Pedro [2 ]
机构
[1] Univ Minho, Dept Prod & Syst Engn, Campus Gualtar, P-4710057 Braga, Portugal
[2] Univ Porto, Inst Ciencias Biomed Abel Salazar, P-40999002 Oporto, Portugal
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C | 2011年 / 1389卷
关键词
parameter uncertainty; multi-objective optimization; evolutionary algorithms; numerical optimization;
D O I
10.1063/1.3636847
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general, parameters in multi-objective optimization are assumed as deterministic with no uncertainty. However, uncertainty in the parameters can affect both variable and objective spaces. The corresponding Pareto optimal fronts, resulting from the disturbed problem, define a cloud of curves. In this work, the main objective is to study the resulting cloud of curves in order to identify regions of more robustness and, therefore, to assist the decision making process. Preliminary results, for a very limited set of problems, show that the resulting cloud of curves exhibits regions of less variation, which are, therefore, more robust to parameter uncertainty.
引用
收藏
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 2002, Evolutionary algorithms for solving multi-objective problems
[2]   An adaptive sharing Elitist Evolution Strategy for multiobjective optimization [J].
Costa, L ;
Oliveira, P .
EVOLUTIONARY COMPUTATION, 2003, 11 (04) :417-438
[3]   Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems [J].
Costa, L ;
Oliveira, P .
COMPUTERS & CHEMICAL ENGINEERING, 2001, 25 (2-3) :257-266
[4]  
Costa L., 2003, METAHEURISTICS COMPU, P217
[5]  
Deb K., 1995, Complex Systems, V9, P115
[6]  
Deb K., 2010, MULTIOBJECTIVE OPTIM
[7]  
Goldberg DE., 1989, GENETIC ALGORITHMS S, V13
[8]  
Schwefel H.-P., 1995, EVOLUTION OPTIMUM SE