The inverse source problem for Maxwell's equations

被引:86
作者
Albanese, R. [1 ]
Monk, P. B.
机构
[1] USAF, Res Lab, HEX, Brooks City Base, San Antonio, TX 78235 USA
[2] Univ Delaware, Dept Math Sci, Newark, DE 19711 USA
关键词
D O I
10.1088/0266-5611/22/3/018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse source problem for Maxwell's equations is considered. We show that the problem of finding a volume current density from surface measurements does not have a unique solution, and characterizes the non-uniqueness. We also show that if further a priori information is available, the inverse source problem may have a unique solution (in particular for surface currents or dipole sources).
引用
收藏
页码:1023 / 1035
页数:13
相关论文
共 24 条
[1]   An inverse source problem for Maxwell's equations in magnetoencephalography [J].
Ammari, H ;
Bao, G ;
Fleming, JL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1369-1382
[2]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[3]  
2-B
[4]   NONUNIQUENESS IN INVERSE SOURCE PROBLEM IN ACOUSTICS AND ELECTROMAGNETICS [J].
BLEISTEIN, N ;
COHEN, JK .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (02) :194-201
[5]   On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces [J].
Colton, D ;
Kress, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (16) :1289-1303
[6]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5
[7]   On the non-uniqueness of the inverse MEG problem [J].
Dassios, G ;
Fokas, AS ;
Kariotou, F .
INVERSE PROBLEMS, 2005, 21 (02) :L1-L5
[8]   Magnetoencephalography in ellipsoidal geometry [J].
Dassios, G ;
Kariotou, F .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (01) :220-241
[9]   Nonradiating surface sources [J].
Devaney, AJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (11) :2216-2222
[10]   The unique determination of neuronal currents in the brain via magnetoencephalography [J].
Fokas, AS ;
Kurylev, Y ;
Marinakis, V .
INVERSE PROBLEMS, 2004, 20 (04) :1067-1082