Weakly Supervised Video Object Segmentation

被引:0
作者
Wang, Yufei [1 ]
Hu, Yongjiang [1 ]
Liew, Alan Wee-Chung [2 ]
Wang, Junhu [2 ]
机构
[1] South China Univ Technol, Sino Singapore Int Joint Res Inst, Sch Elect & Informat Engn, Guangzhou, Guangdong, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Gold Coast, Australia
来源
PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE | 2018年
基金
澳大利亚研究理事会;
关键词
weakly supervised; video object segmentation; object probability; energy minimization; deep learning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a novel approach of weakly supervised video object segmentation, which only needs one pixel to guide the segmentation. We use two deep neural networks to get the instance-level semantic segmentation masks and optical flow maps of each frame. An object probability map to the first frame in video is generated by combining the semantic masks, the optical flow maps and the guiding pixel. The object probability map propagates forward and backward and becomes more accurate to each frame. Finally, an energy minimization problem on a function that consists of unary term of object probability and pairwise terms of label smoothness potentials is solved to get the pixel-wise object segmentation mask of each frame. We evaluate our method on a benchmark dataset, and the experimental results show that the proposed approach achieves impressive performance in comparison with state-of-the-art methods.
引用
收藏
页码:0315 / 0320
页数:6
相关论文
共 26 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2017, CVPR
[3]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[4]   One-Shot Video Object Segmentation [J].
Caelles, S. ;
Maninis, K. -K. ;
Pont-Tuset, J. ;
Leal-Taixe, L. ;
Cremers, D. ;
Van Gool, L. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5320-5329
[5]   SegFlow: Joint Learning for Video Object Segmentation and Optical Flow [J].
Cheng, Jingchun ;
Tsai, Yi-Hsuan ;
Wang, Shengjin ;
Yang, Ming-Hsuan .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :686-695
[6]  
Ester M., 1996, P 2 INT C KNOWL DISC, V96, P226
[7]   JumpCut: Non-Successive Mask Transfer and Interpolation for Video Cutout [J].
Fan, Qingnan ;
Zhong, Fan ;
Lischinski, Dani ;
Cohen-Or, Daniel ;
Chen, Baoquan .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06)
[8]   Two linear time Union-Find strategies for image processing [J].
Fiorio, C ;
Gustedt, J .
THEORETICAL COMPUTER SCIENCE, 1996, 154 (02) :165-181
[9]   Efficient Hierarchical Graph-Based Video Segmentation [J].
Grundmann, Matthias ;
Kwatra, Vivek ;
Han, Mei ;
Essa, Irfan .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :2141-2148
[10]  
He K., 2017, P IEEE INT C COMPUTE, V2017, P2980