Entropy-driven asymmetric synthesis with chiral tethers

被引:25
|
作者
Sugimura, T [1 ]
机构
[1] Himeji Inst Technol, Grad Sch Sci, Kamigori, Hyogo 6781297, Japan
关键词
asymmetric synthesis; enantioselectivity; chiral tether; chiral perturbation;
D O I
10.1002/ejoc.200300518
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
The 2,4-pentanediol (PD)-tethered reaction is a stereocontrolled reaction having versatile applicability. When reactant and reagent elements are connected through a PD tether prior to their reaction, stereochemical purity of the product is very high for nine different types of reactions so far studied. Selectivity of one of the reactions shows temperature independency over a wide range from -78 to 150 degreesC, which indicates that the stereocontrol is driven by the entropy term. The strict stereocontrol of this reaction at high temperatures can be extended to vapor phase reactions performed above 250 degreesC. To understand how the two methyl groups on the PD tether stereocontrol the reaction, a new parameter, a chiral perturbation factor, is introduced. By this analysis, it is disclosed that the methyl groups promote an activation entropy change for both the diastereomeric processes, and the strict stereocontrol is achieved when the changes have opposite signs. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
引用
收藏
页码:1185 / 1192
页数:8
相关论文
共 50 条
  • [21] Entropy-driven order in an array of nanomagnets
    Saglam, Hilal
    Duzgun, Ayhan
    Kargioti, Aikaterini
    Harle, Nikhil
    Zhang, Xiaoyu
    Bingham, Nicholas S.
    Lao, Yuyang
    Gilbert, Ian
    Sklenar, Joseph
    Watts, Justin D.
    Ramberger, Justin
    Bromley, Daniel
    Chopdekar, Rajesh V.
    O'Brien, Liam
    Leighton, Chris
    Nisoli, Cristiano
    Schiffer, Peter
    NATURE PHYSICS, 2022, 18 (06) : 706 - +
  • [22] Entropy-driven order in an array of nanomagnets
    Hilal Saglam
    Ayhan Duzgun
    Aikaterini Kargioti
    Nikhil Harle
    Xiaoyu Zhang
    Nicholas S. Bingham
    Yuyang Lao
    Ian Gilbert
    Joseph Sklenar
    Justin D. Watts
    Justin Ramberger
    Daniel Bromley
    Rajesh V. Chopdekar
    Liam O’Brien
    Chris Leighton
    Cristiano Nisoli
    Peter Schiffer
    Nature Physics, 2022, 18 : 706 - 712
  • [23] Entropy-driven phase transitions and the Kauzmann entropy crisis
    Holyst, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 292 (1-4) : 255 - 258
  • [24] Thermodynamics of entropy-driven phase transformations
    Radosz, A
    Ostasiewicz, K
    Magnuszewski, P
    Damczyk, J
    Radosinski, L
    Kusmartsev, FV
    Samson, JH
    Mitus, AC
    Pawlik, G
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [25] ENTROPY-DRIVEN METASTABILITIES IN DEFECTS IN SEMICONDUCTORS
    HAMILTON, B
    PEAKER, AR
    PANTELIDES, ST
    PHYSICAL REVIEW LETTERS, 1988, 61 (14) : 1627 - 1630
  • [26] Entropy-Driven Depolymerization of Poly(dimethylsiloxane)
    Torgunrud, Jordan L.
    Reveron Perez, Aracelee M.
    Spitzberg, Emily B.
    Miller, Stephen A.
    MACROMOLECULES, 2023, 56 (10) : 3668 - 3678
  • [27] Entropy-Driven Direct Air Electrofixation
    Sun, Yuntong
    Li, Ming
    Duan, Jingjing
    Antonietti, Markus
    Chen, Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (20)
  • [28] Entropy-driven aggregation in multilamellar membranes
    Noguchi, Hiroshi
    EPL, 2013, 102 (06)
  • [29] Thermal Shift as an Entropy-Driven Effect
    Redhead, Martin
    Satchell, Rupert
    McCarthy, Ciara
    Pollack, Scott
    Unitt, John
    BIOCHEMISTRY, 2017, 56 (47) : 6187 - 6199
  • [30] ENTROPY-DRIVEN STRUCTURES OF THE WATER OCTAMER
    KIM, JS
    MHIN, BJ
    LEE, SJ
    KIM, KS
    CHEMICAL PHYSICS LETTERS, 1994, 219 (3-4) : 243 - 246