Spinor Casimir densities for a spherical shell in the global monopole spacetime

被引:27
作者
Saharian, AA [1 ]
de Mello, ERB
机构
[1] Yerevan State Univ, Dept Phys, Yerevan 375049, Armenia
[2] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[3] Univ Fed Paraiba, CCEN, Dept Fis, BR-58059970 Joao Pessoa, PB, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 10期
关键词
D O I
10.1088/0305-4470/37/10/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the vacuum expectation values of the energy-momentum tensor and the fermionic condensate associated with a massive spinor field obeying, the MIT bag boundary condition on a spherical shell in the global monopole spacetime. In order to do that, we use the generalized Abel-Plana summation formula. As we shall see, this procedure allows us to extract from the vacuum expectation values the contribution coming from the unbounded spacetime and to explicitly present the boundary induced parts. As regards the boundary induced contribution, two distinct situations are examined: the vacuum average effects. inside and outside the spherical shell. The asymptotic behaviour of the vacuum densities is investigated near the sphere centre and near the surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in the global monopole geometry, the sphere induced expectation values are exponentially suppressed. We discuss, as a special case, the fermionic vacuum densities for the spherical shell on the background of the Minkowski spacetime. Previous approaches to this problem within the framework of the QCD bag models have been global and our calculation is a local extension of these contributions.
引用
收藏
页码:3543 / 3559
页数:17
相关论文
共 50 条
[41]   Casimir energy density for spherical universes in n-dimensional spacetime [J].
Ozcan, Mustafa .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (18) :5531-5546
[42]   Holographic Phase Transition in AdS Spacetime with Global Monopole [J].
Li, Huiling ;
Yang, Shuzheng ;
Feng, Zhongwen ;
Zu, Xiaotao .
5TH ANNUAL INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING (MSEE2017), 2018, 301
[43]   ⟨φ2⟩ for a massive scalar field in global monopole spacetime [J].
Fernandez Piedra, Owen Pavel .
PHYSICAL REVIEW D, 2020, 101 (12)
[44]   Morse simulation of the global monopole equation in flat spacetime [J].
Mazharimousavi, S. Habib ;
Halilsoy, M. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (11)
[45]   Vacuum polarization in the global monopole spacetime at finite temperature [J].
De Mello, ERB ;
Carvalho, FC .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7) :879-884
[46]   Casimir densities for a spherical brane in Rindler-like spacetimes [J].
Saharian, AA ;
Setare, MR .
NUCLEAR PHYSICS B, 2005, 724 (1-2) :406-422
[47]   Critical phenomena of gravitating monopoles in the spacetime of a global monopole [J].
Brihaye, Y ;
Hartmann, B .
PHYSICAL REVIEW D, 2002, 66 (06)
[48]   Weyl problem and Casimir effects in spherical shell geometry [J].
Kolomeisky, Eugene B. ;
Zaidi, Hussain ;
Langsjoen, Luke ;
Straley, Joseph P. .
PHYSICAL REVIEW A, 2013, 87 (04)
[49]   Surface Casimir densities and induced cosmological constant on parallel branes in AdS spacetime [J].
Saharian, AA .
PHYSICAL REVIEW D, 2004, 70 (06) :064026-1
[50]   Casimir effect for a spherical shell in de Sitter space [J].
Setare, MR ;
Mansouri, R .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (12) :2331-2338