Spinor Casimir densities for a spherical shell in the global monopole spacetime

被引:26
作者
Saharian, AA [1 ]
de Mello, ERB
机构
[1] Yerevan State Univ, Dept Phys, Yerevan 375049, Armenia
[2] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[3] Univ Fed Paraiba, CCEN, Dept Fis, BR-58059970 Joao Pessoa, PB, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 10期
关键词
D O I
10.1088/0305-4470/37/10/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the vacuum expectation values of the energy-momentum tensor and the fermionic condensate associated with a massive spinor field obeying, the MIT bag boundary condition on a spherical shell in the global monopole spacetime. In order to do that, we use the generalized Abel-Plana summation formula. As we shall see, this procedure allows us to extract from the vacuum expectation values the contribution coming from the unbounded spacetime and to explicitly present the boundary induced parts. As regards the boundary induced contribution, two distinct situations are examined: the vacuum average effects. inside and outside the spherical shell. The asymptotic behaviour of the vacuum densities is investigated near the sphere centre and near the surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in the global monopole geometry, the sphere induced expectation values are exponentially suppressed. We discuss, as a special case, the fermionic vacuum densities for the spherical shell on the background of the Minkowski spacetime. Previous approaches to this problem within the framework of the QCD bag models have been global and our calculation is a local extension of these contributions.
引用
收藏
页码:3543 / 3559
页数:17
相关论文
共 50 条
[21]   Casimir densities for a boundary in Robertson-Walker spacetime [J].
Saharian, A. A. ;
Setare, M. R. .
PHYSICS LETTERS B, 2010, 687 (2-3) :253-257
[22]   Scalar self-energy for a charged particle in global monopole spacetime with a spherical boundary [J].
Bezerra de Mello, E. R. ;
Saharian, A. A. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (13)
[23]   Spacetime structure of an inflating global monopole [J].
Cho, IY ;
Vilenkin, A .
PHYSICAL REVIEW D, 1997, 56 (12) :7621-7626
[24]   ELECTROMAGNETIC CASIMIR DENSITIES IN DIELECTRIC SPHERICAL MEDIA [J].
BREVIK, I ;
KOLBENSTVEDT, H .
ANNALS OF PHYSICS, 1983, 149 (02) :237-253
[25]   Fermionic Casimir densities in anti-de Sitter spacetime [J].
Elizalde, E. ;
Odintsov, S. D. ;
Saharian, A. A. .
PHYSICAL REVIEW D, 2013, 87 (08)
[26]   Reply to "Comment on 'Gravitating magnetic monopole in the global monopole spacetime' " [J].
de Mello, ERB .
PHYSICAL REVIEW D, 2003, 68 (08)
[27]   Global monopole in asymptotically dS/Ads spacetime [J].
Li, XZ ;
Hao, JG .
PHYSICAL REVIEW D, 2002, 66 (10)
[28]   Relativistic quantum oscillators in the global monopole spacetime [J].
E. A. F. Bragança ;
R. L. L. Vitória ;
H. Belich ;
E. R. Bezerra de Mello .
The European Physical Journal C, 2020, 80
[29]   Relativistic quantum oscillators in the global monopole spacetime [J].
Braganca, E. A. F. ;
Vitoria, R. L. L. ;
Belich, H. ;
de Mello, E. R. Bezerra .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (03)
[30]   The global monopole spacetime and its topological charge [J].
谭鸿威 ;
杨锦波 ;
张靖仪 ;
何唐梅 .
Chinese Physics B, 2018, (03) :150-156