Embedded optical waveguides fabricated in SF10 glass by low-repetition-rate ultrafast laser

被引:14
作者
Bai, Jing [1 ,2 ]
Long, Xuewen [1 ,2 ]
Liu, Xin [1 ]
Huo, Guangwen [1 ]
Zhao, Wei [1 ]
Stoian, Razvan [3 ]
Hui, Rongqing [4 ]
Cheng, Guanghua [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[2] Grad Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ St Etienne, Univ Lyon, CNRS, Lab Hubert Curien,UMR 5516, F-42000 St Etienne, France
[4] Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66044 USA
基金
中国科学院西部之光基金; 中国国家自然科学基金;
关键词
SELF-FOCUSING THRESHOLD; FEMTOSECOND-LASER; FUSED-SILICA; LITHIUM-NIOBATE; PULSES; WRITTEN; POLARIZATION; INSCRIPTION; NM;
D O I
10.1364/AO.52.007288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Symmetric embedded waveguides were fabricated in heavy metal oxide SF10 glass using slit-shaped infrared femtosecond laser writing in the low-repetition frequency regime. The impact of the writing parameters on the waveguide formation in the transverse writing scheme was systemically studied. Results indicate that efficient waveguides can be inscribed in a wide parameter space ranging from 500 fs to 1.5 ps pulse duration, 0.7-4.2 mu J pulse energy, and 5 mu m/s to 640 mu m/s scan speed and pointing out the robustness of the photoinscription process. The refractive index profile reconstructed from the measured near field pattern goes up to 10(-3). In addition, propagation losses of the waveguides are tolerable, with the lowest propagation loss estimated at 0.7 dB/cm. With a 5 mu m/s scan speed and 3.5 mu J pulse energy in a high-dose regime, few-mode guiding was achieved in the waveguide at 800 nm signal injection wavelength. This is due to a combination of increased refractive index in the core of the trace and the appearance of a depressed cladding. (C) 2013 Optical Society of America
引用
收藏
页码:7288 / 7294
页数:7
相关论文
共 25 条
[1]   Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses [J].
Ams, M ;
Marshall, GD ;
Spence, DJ ;
Withford, MJ .
OPTICS EXPRESS, 2005, 13 (15) :5676-5681
[2]   A finite differences method for the reconstruction of refractive index profiles from near-field measurements [J].
Caccavale, F ;
Segato, F ;
Mansour, I ;
Gianesin, M .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (07) :1348-1353
[3]   Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique [J].
Calmano, T. ;
Paschke, A. -G. ;
Siebenmorgen, J. ;
Fredrich-Thornton, S. T. ;
Yagi, H. ;
Petermann, K. ;
Huber, G. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 103 (01) :1-4
[4]   Waveguide fabrication in phosphate glasses using femtosecond laser pulses [J].
Chan, JW ;
Huser, TR ;
Risbud, SH ;
Hayden, JS ;
Krol, DM .
APPLIED PHYSICS LETTERS, 2003, 82 (15) :2371-2373
[5]   Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass [J].
Cheng, G. ;
Mishchik, K. ;
Mauclair, C. ;
Audouard, E. ;
Stoian, R. .
OPTICS EXPRESS, 2009, 17 (12) :9515-9525
[6]   Writing waveguides in glass with a femtosecond laser [J].
Davis, KM ;
Miura, K ;
Sugimoto, N ;
Hirao, K .
OPTICS LETTERS, 1996, 21 (21) :1729-1731
[7]   Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold [J].
Diez-Blanco, V. ;
Siegel, J. ;
Solis, J. .
APPLIED SURFACE SCIENCE, 2006, 252 (13) :4523-4526
[8]   Direct femtosecond laser waveguide writing inside zinc phosphate glass [J].
Fletcher, Luke B. ;
Witcher, Jon J. ;
Troy, Neil ;
Reis, Signo T. ;
Brow, Richard K. ;
Krol, Denise M. .
OPTICS EXPRESS, 2011, 19 (09) :7929-7936
[9]   Femtosecond laser micromachining in transparent materials [J].
Gattass, Rafael R. ;
Mazur, Eric .
NATURE PHOTONICS, 2008, 2 (04) :219-225
[10]   Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices [J].
Kallepalli, Lakshmi Narayana Deepak ;
Rao, Soma Venugopal ;
Desai, Narayana Rao .
OPTICAL ENGINEERING, 2012, 51 (07)