FERAtt: Facial Expression Recognition with Attention Net

被引:77
作者
Marrero Fernandez, Pedro D. [1 ]
Guerrero Pena, Fidel A. [1 ,2 ]
Ren, Tsang Ing [1 ]
Cunha, Alexandre [2 ]
机构
[1] Univ Fed Pernambuco UFPE, Ctr Informat CIn, Recife, PE, Brazil
[2] CALTECH, Ctr Adv Methods Biol Image Anal CAMBIA, Pasadena, CA 91125 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019) | 2019年
关键词
D O I
10.1109/CVPRW.2019.00112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new end-to-end network architecture for facial expression recognition with an attention model. It focuses attention in the human face and uses a Gaussian space representation for expression recognition. We devise this architecture based on two fundamental complementary components: (I) facial image correction and attention and (2) facial expression representation and classification. The first component uses an encoder-decoder style network and a convolutional feature extractor that are pixel-wise multiplied to obtain a feature attention map. The second component is responsible for obtaining an embedded representation and classification of the facial expression. We propose a loss function that creates a Gaussian structure on the representation space. To demonstrate the proposed method, we create two larger and more comprehensive synthetic datasets using the traditional BU3DFE and CK+ facial datasets. We compared results with the Pre-ActResNet18 baseline. Our experiments on these datasets have shown the superiority of our approach in recognizing facial expressions.
引用
收藏
页码:837 / 846
页数:10
相关论文
共 47 条
[21]   Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order [J].
Lopes, Andre Teixeira ;
de Aguiar, Edilson ;
De Souza, Alberto F. ;
Oliveira-Santos, Thiago .
PATTERN RECOGNITION, 2017, 61 :610-628
[22]  
Lucey P., 2010, 2010 IEEE COMP SOC C, P94
[23]   Fast and robust multiple ColorChecker detection using deep convolutional neural networks [J].
Marrero Fernandez, Pedro D. ;
Guerrero Pena, Fidel A. ;
Ren, Tsang Ing ;
Leandro, Jorge J. G. .
IMAGE AND VISION COMPUTING, 2019, 81 :15-24
[24]   Identity-Aware Convolutional Neural Network for Facial Expression Recognition [J].
Meng, Zibo ;
Liu, Ping ;
Cai, Jie ;
Han, Shizhong ;
Tong, Yan .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :558-565
[25]  
Mnih V, 2014, ADV NEUR IN, V27
[26]  
Mollahosseini A, 2016, IEEE WINT CONF APPL
[27]   Theoretical neuroscience: Computational and mathematical modeling of neural systems [J].
Olshausen, BA .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2003, 15 (01) :154-155
[28]  
Olshausen Bruno, 2016, arXiv preprint arXiv:1611.09430
[29]   Learning Dual Convolutional Neural Networks for Low-Level Vision [J].
Pan, Jinshan ;
Liu, Sifei ;
Sun, Deqing ;
Zhang, Jiawei ;
Liu, Yang ;
Ren, Jimmy ;
Li, Zechao ;
Tang, Jinhui ;
Lu, Huchuan ;
Tai, Yu-Wing ;
Yang, Ming-Hsuan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3070-3079
[30]  
Picard Rosalind W, 2000, Affective Computing