Post Arrays for the Immobilization of Vapochromic Coordination Polymers for Chemical Sensors

被引:4
|
作者
Stevens, David M. [1 ]
Gray, Bonnie L. [1 ]
Yin, Dawei [2 ]
Chapman, Glenn H. [2 ]
Leznoff, Daniel B. [3 ]
机构
[1] Simon Fraser Univ, Microinstrumentat Lab, Sch Engn Sci ENSC, Vancouver, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Opt Lab, Sch Engn Sci ENSC, Vancouver, BC V5A 1S6, Canada
[3] Simon Fraser Univ, Dept Chem, Vancouver, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ammonia; Optical surface waves; Sensor arrays; Resists; Fluorescence; Optical sensors; Ammonia sensors; immobilization techniques; vapochromic coordination polymers; power transformers; PDMS;
D O I
10.1109/JSEN.2020.3000178
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new immobilization method for Vapochromic Coordination Polymers (VCPs) for micromachined fluorescence chemical sensors. The method involves creating a sheet of post arrays in polydimethylsiloxane (PDMS) to trap and adhere the VCPs to the sensing surface. The method is simple, robust, and employs inexpensive micro-molding of PDMS polymer. Results suggest that, compared to un-patterned (flat) PDMS surfaces: 1) the VCPs on the patterned surfaces can detect ammonia gas without rendering the VCP inert (unable to fluoresce) or inaccessible; and 2) the technique has improved immobilization (attachment of VCP). We show that as the shapes of the top of the post arrays are changed from simple to mushroom-shaped caps, the sensitivity of the sensing surface is increased. Ammonia detection in the range of 5 ppm is possible with the most pronounced mushroom-shaped posts.
引用
收藏
页码:12102 / 12108
页数:7
相关论文
共 50 条
  • [1] Post arrays for the immobilization of vapochromic coordination polymers for chemical sensors
    Stevens, David
    Gray, Bonnie
    Yin, David
    Chapman, Glenn
    Leznoff, Daniel
    2017 IEEE SENSORS, 2017, : 612 - 614
  • [2] Conducting polymers in chemical sensors and arrays
    Lange, Ulrich
    Roznyatouskaya, Nataliya V.
    Mirsky, Vladimir M.
    ANALYTICA CHIMICA ACTA, 2008, 614 (01) : 1 - 26
  • [3] Copper(II) Dihalotetracyanoplatinate(IV) Coordination Polymers and Their Vapochromic Behavior
    Sergeenko, Ania S.
    Ovens, Jeffrey S.
    Leznoff, Daniel B.
    INORGANIC CHEMISTRY, 2017, 56 (14) : 7870 - 7881
  • [4] Vapochromic response of heterometallic nanoparticles in the design of chemical sensors
    Nicholas, Aaron
    Barnes, Francis
    Sturner, Matthew
    Pike, Robert
    Patterson, Howard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [5] Nanoscale coordination polymers for medicine and sensors
    Solorzano, Ruben
    Suarez-Garcia, Salvio
    Novio, Fernando
    Lorenzo, Julia
    Alibes, Ramon
    Busque, Felix
    Ruiz-Molina, Daniel
    ADVANCES IN INORGANIC CHEMISTRY, VOL 76: NANOSCALE COORDINATION CHEMISTRY, 2020, 76 : 3 - 31
  • [6] Carbosiloxane polymers for chemical sensors
    Grate, JW
    Kaganove, SN
    Nelson, DA
    CHEMICAL INNOVATION, 2000, 30 (11): : 29 - 37
  • [7] Sorbent polymers for chemical sensors
    Grate, JW
    Abraham, MH
    McGill, RA
    ANTEC '96: PLASTICS - RACING INTO THE FUTURE, VOLS I-III: VOL I: PROCESSING; VOL II: MATERIALS; VOL III: SPACIAL AREAS, 1996, 42 : 2075 - 2079
  • [8] CONDUCTING POLYMERS AND CHEMICAL SENSORS
    GUSTAFSSON, G
    LUNDSTROM, I
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 193 : 87 - IAEC
  • [9] Detection of low concentration ammonia using differential laser induced fluorescence on vapochromic coordination polymers
    Yin, Dawei
    Chapman, Glenn H.
    Stevens, David
    Gray, Bonnie
    Leznoff, Daniel
    PHOTONIC INSTRUMENTATION ENGINEERING V, 2018, 10539
  • [10] Friction for flexible pressure sensors and arrays on polymers
    Wang, Kang
    Zhang, Yangyang
    Li, Hankun
    He, Zhuang
    Zang, Jianfeng
    Du, Chao
    Yu, Yan
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2022, 7 (04):