Inversion formula for the windowed Fourier transform, II

被引:2
|
作者
Sun, Xudong [1 ]
Sun, Wenchang [2 ,3 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Windowed Fourier transform; Inversion formula;
D O I
10.1007/s10444-011-9223-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the approximation of the inversion of windowed Fourier transforms using Riemannian sums. We show that for certain window functions, the Riemannian sums are well defined on L (p) (a"e), 1 < p < a, and tend to the function to be reconstructed as the sampling density tends to infinity.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [1] Inversion formula for the windowed Fourier transform, II
    Xudong Sun
    Wenchang Sun
    Advances in Computational Mathematics, 2013, 38 : 21 - 34
  • [2] Inversion formula for the windowed Fourier transform
    Sun, W.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (07) : 914 - 921
  • [3] Inversion formula for the windowed linear canonical transform
    Han, Yaoyao
    Sun, Wenchang
    APPLICABLE ANALYSIS, 2022, 101 (14) : 5156 - 5170
  • [4] The Fourier transform and an inversion formula for Laplace transforms
    Pavlov, A. V.
    MATHEMATICAL NOTES, 2011, 90 (5-6) : 775 - 779
  • [5] The Fourier transform and an inversion formula for Laplace transforms
    A. V. Pavlov
    Mathematical Notes, 2011, 90 : 775 - 779
  • [6] Windowed Octonionic Fourier Transform
    Younis Ahmad Bhat
    Neyaz A. Sheikh
    Circuits, Systems, and Signal Processing, 2023, 42 : 2872 - 2896
  • [7] On the inverse windowed Fourier transform
    Rebollo-Neira, L
    Fernandez-Rubio, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2668 - 2671
  • [8] Adaptive windowed Fourier transform
    Djurovic, I
    Stankovic, L
    SIGNAL PROCESSING, 2003, 83 (01) : 91 - 100
  • [9] A WINDOWED DIGRAPH FOURIER TRANSFORM
    Shafipour, Rasoul
    Khodabakhsh, Ali
    Mateos, Gonzalo
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7525 - 7529
  • [10] α-Windowed Fourier transform (α-WFT)
    Catana, Viorel
    Flondor, Ioana-Maria
    Scumpu, Mihaela-Gratiela
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)