Characteristic classes of bundles of K3 manifolds and the Nielsen realization problem

被引:7
作者
Giansiracusa, Jeffrey [1 ]
Kupers, Alexander [2 ]
Tshishiku, Bena [2 ,3 ]
机构
[1] Swansea Univ, Dept Math, Swansea, Wales
[2] Harvard Univ, Dept Math, Cambridge, MA USA
[3] Brown Univ, Dept Math, Providence, RI USA
基金
美国国家科学基金会;
关键词
characteristic classes; K3; surfaces; arithmetic groups; cohomology; EISENSTEIN COHOMOLOGY; TAUTOLOGICAL CLASSES; SURFACE; MODULI; FORMS;
D O I
10.2140/tunis.2021.3.75
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the K3 manifold. In this note, we discuss two methods to prove that certain generalized Miller-Morita-Mumford classes for smooth bundles with fiber K are nonzero. As a consequence, we fill a gap in a paper of the first author, and prove that the homomorphism Diff(K) -> pi(0)Diff(K) does not split. One of the two methods of proof uses a result of Franke on the stable cohomology of arithmetic groups that strengthens work of Borel, and may be of independent interest.
引用
收藏
页码:75 / +
页数:21
相关论文
共 27 条
[1]  
Atiyah M.F., 1969, GLOBAL ANAL, P73
[2]  
Borel A., 1975, ANN SCI ECOLE NORM S, V7, P235
[3]  
Borel A., 1977, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V4, P613
[4]  
BOTT R., 1970, Global Analysis, VXVI, P127
[5]   Perfect forms, K-theory and the cohomology of modular groups [J].
Elbaz-Vincenta, Philippe ;
Gangl, Herbert ;
Soule, Christophe .
ADVANCES IN MATHEMATICS, 2013, 245 :587-624
[6]   Harmonic analysis in weighted L2-spaces [J].
Franke, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (02) :181-279
[7]   A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of arithmetic groups [J].
Franke, J ;
Schwermer, J .
MATHEMATISCHE ANNALEN, 1998, 311 (04) :765-790
[8]  
Franke J, 2008, PROG MATH, V258, P27
[9]  
G VanDerGeer., 2013, ADV LECT MATH ALM, VVol.I, P415
[10]  
Geer G., 1999, Moduli of curves and abelian varieties, P65