The first Darboux problem for wave equations with a nonlinear positive source term

被引:9
作者
Jokhadze, O. [1 ]
Midodashvili, B. [1 ]
机构
[1] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Nonlinear wave equations; The first Darboux problem; Global and local solvability; Blow-up;
D O I
10.1016/j.na.2007.08.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the first Darboux problem for nonlinear wave equations with positive power nonlinearity source term. Depending on the power of nonlinearity we investigate the problem on a global existence and blow-up of solutions of the first Darboux problem. The question of local solvability of the problem is also considered. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3005 / 3015
页数:11
相关论文
共 17 条
[1]  
Bitsadze A. V., 1981, Some Classes of Partial Differential Equations
[2]   Weighted Strichartz estimates and global existence for semilinear wave equations [J].
Georgiev, V ;
Lindblad, H ;
Sogge, CD .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (06) :1291-1319
[3]  
GILBARG D, 1989, ELLIPTIC EQUATIONS 2
[4]  
GOURSAT E, 1933, COURSE MATH ANAL 1, V3
[5]  
Henry D., 1985, GEOMETRICAL THEORY S
[6]  
Hormander L., 1997, Mathematiques & Applications (Berlin) [Mathematics & Applications], V26, P290
[7]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51
[9]   ALMOST GLOBAL EXISTENCE TO NONLINEAR-WAVE EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F ;
KLAINERMAN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (04) :443-455