A second order algebraic knot concordance group

被引:2
作者
Powell, Mark [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47401 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2012年 / 12卷 / 02期
关键词
BLANCHFIELD DUALITY; L-2-SIGNATURES; INVARIANTS; COBORDISM; MANIFOLDS;
D O I
10.2140/agt.2012.12.685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be the topological knot concordance group of knots S-1 subset of S-3 under connected sum modulo slice knots. Cochran, Orr and Teichner defined a filtration: C superset of F-(0) superset of F-(0.5) superset of F-(1) superset of F-(1.5) superset of F-(2) superset of ... The quotient C/F-(0.5) is isomorphic to Levine's algebraic concordance group; F-(0.5) is the algebraically slice knots. The quotient C/F-(1.5) contains all metabelian concordance obstructions. Using chain complexes with a Poincare duality structure, we define an abelian group AC(2), our second order algebraic knot concordance group. We define a group homomorphism C -> AC(2) which factors through C/F-(1.5), and we can extract the two stage Cochran-Orr-Teichner obstruction theory from our single stage obstruction group AC(2). Moreover there is a surjective homomorphism AC(2) -> C/F(0.5), and we show that the kernel of this homomorphism is nontrivial.
引用
收藏
页码:685 / 751
页数:67
相关论文
共 25 条
  • [1] INTERSECTION THEORY OF MANIFOLDS WITH OPERATORS WITH APPLICATIONS TO KNOT THEORY
    BLANCHFIELD, RC
    [J]. ANNALS OF MATHEMATICS, 1957, 65 (02) : 340 - 356
  • [2] CODIMENSION -2 PLACEMENT PROBLEM AND HOMOLOGY EQUIVALENT MANIFOLDS
    CAPPELL, SE
    SHANESON, JL
    [J]. ANNALS OF MATHEMATICS, 1974, 99 (02) : 277 - 348
  • [3] Casson A. J., 1986, La Recherche de la Topologie Perdue, V62, P181
  • [4] L2-signatures, homology localization, and amenable groups
    Cha, Jae Choon
    Orr, Kent E.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (06) : 790 - 832
  • [5] Structure in the classical knot concordance group
    Cochran, TD
    Orr, KE
    Teichner, P
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (01) : 105 - 123
  • [6] Knot concordance, Whitney towers and L2-signatures
    Cochran, TD
    Orr, KE
    Teichner, P
    [J]. ANNALS OF MATHEMATICS, 2003, 157 (02) : 433 - 519
  • [7] Knot concordance and von Neumann p-invariants
    Cochran, Tim D.
    Teichner, Peter
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 137 (02) : 337 - 379
  • [8] Primary decomposition and the fractal nature of knot concordance
    Cochran, Tim D.
    Harvey, Shelly
    Leidy, Constance
    [J]. MATHEMATISCHE ANNALEN, 2011, 351 (02) : 443 - 508
  • [9] Derivatives of knots and second-order signatures
    Cochran, Tim D.
    Harvey, Shelly
    Leidy, Constance
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (02): : 739 - 787
  • [10] Knot concordance and higher-order Blanchfield duality
    Cochran, Tim D.
    Harvey, Shelly
    Leidy, Constance
    [J]. GEOMETRY & TOPOLOGY, 2009, 13 : 1419 - 1482