Measuring Information Leakage using Generalized Gain Functions

被引:134
作者
Alvim, Mario S. [1 ]
Chatzikokolakis, Kostas [2 ]
Palamidessi, Catuscia [2 ]
Smith, Geoffrey [3 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] CNRS, INRIA, Ecole Polytech, LIX, Palaiseau, France
[3] Florida Int Univ, Miami, FL 33199 USA
来源
2012 IEEE 25TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF) | 2012年
基金
美国国家科学基金会;
关键词
BAYES RISK;
D O I
10.1109/CSF.2012.26
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces g-leakage, a rich generalization of the min-entropy model of quantitative information flow. In g-leakage, the benefit that an adversary derives from a certain guess about a secret is specified using a gain function g. Gain functions allow a wide variety of operational scenarios to be modeled, including those where the adversary benefits from guessing a value close to the secret, guessing a part of the secret, guessing a property of the secret, or guessing the secret within some number of tries. We prove important properties of g-leakage, including bounds between min-capacity, g-capacity, and Shannon capacity. We also show a deep connection between a strong leakage ordering on two channels, C-1 and C-2, and the possibility of factoring C-1 into C2C3, for some C-3. Based on this connection, we propose a generalization of the Lattice of Information from deterministic to probabilistic channels.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 32 条
  • [21] McIver A., 2010, CORR
  • [22] McIver A, 2010, LECT NOTES COMPUT SC, V6199, P223, DOI 10.1007/978-3-642-14162-1_19
  • [23] McLean J., 1990, Proceedings. 1990 IEEE Computer Society Symposium on Research in Security and Privacy (Cat. No.90CH2884-5), P180, DOI 10.1109/RISP.1990.63849
  • [24] Millen J. K., 1987, Proceedings of the 1987 IEEE Symposium on Security and Privacy (Cat. No.87CH2416-6), P60
  • [25] Pan JN, 2006, 2006 IEEE INTERNATIONAL CONFERENCE ON MANAGEMENT OF INNOVATION AND TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, P783
  • [26] Parmigiani G., 2009, DECISION THEORY PRIN, VVolume 812
  • [27] Loss function-based evaluation of DSGE models
    Schorfheide, F
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2000, 15 (06) : 645 - 670
  • [28] Smith G, 2011, BALLET REV, V39, P8
  • [29] Smith G, 2009, LECT NOTES COMPUT SC, V5504, P288
  • [30] Witten M. H. C. P. I., 2011, DATA MINING PRACTICA